L(s) = 1 | − 0.281·2-s − 1.92·4-s + (2.04 + 3.54i)5-s + (−1.79 − 1.94i)7-s + 1.10·8-s + (−0.575 − 0.996i)10-s + (−0.678 − 1.17i)11-s + (2.99 + 2.00i)13-s + (0.504 + 0.547i)14-s + 3.53·16-s + 6.60·17-s + (−1.75 + 3.04i)19-s + (−3.92 − 6.80i)20-s + (0.190 + 0.330i)22-s − 5.23·23-s + ⋯ |
L(s) = 1 | − 0.198·2-s − 0.960·4-s + (0.914 + 1.58i)5-s + (−0.677 − 0.735i)7-s + 0.389·8-s + (−0.182 − 0.315i)10-s + (−0.204 − 0.354i)11-s + (0.830 + 0.557i)13-s + (0.134 + 0.146i)14-s + 0.882·16-s + 1.60·17-s + (−0.402 + 0.698i)19-s + (−0.878 − 1.52i)20-s + (0.0406 + 0.0704i)22-s − 1.09·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.338 - 0.941i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.338 - 0.941i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.574659 + 0.817257i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.574659 + 0.817257i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (1.79 + 1.94i)T \) |
| 13 | \( 1 + (-2.99 - 2.00i)T \) |
good | 2 | \( 1 + 0.281T + 2T^{2} \) |
| 5 | \( 1 + (-2.04 - 3.54i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.678 + 1.17i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 6.60T + 17T^{2} \) |
| 19 | \( 1 + (1.75 - 3.04i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 5.23T + 23T^{2} \) |
| 29 | \( 1 + (4.00 - 6.93i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.61 - 6.26i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 4.47T + 37T^{2} \) |
| 41 | \( 1 + (-0.766 + 1.32i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.847 - 1.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (2.69 + 4.67i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.981 - 1.69i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 2.10T + 59T^{2} \) |
| 61 | \( 1 + (1.94 - 3.37i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.76 + 4.78i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.21 - 9.02i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (1.90 - 3.29i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.59 + 4.49i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 12.2T + 83T^{2} \) |
| 89 | \( 1 - 16.8T + 89T^{2} \) |
| 97 | \( 1 + (0.760 + 1.31i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42169587182257378504834415775, −9.827484660666867565188942317351, −9.004314803834448159838789007560, −7.87257463638196365056076214057, −7.02850543554977294272173201308, −6.14110252465974113116113865070, −5.42200841193119910719018672814, −3.70336837171711614949970056166, −3.35263373476329599160389228265, −1.59084004924050677637440850497,
0.56440730389144175122063956289, 1.95667250287271180096651978450, 3.63285665109503022637241382601, 4.72135919316144793061398717470, 5.65823971218078323524458035813, 5.96167774893362264801575965800, 7.86215894598281682675694901805, 8.395914731693673486595189471615, 9.400231702476024809579324792629, 9.542615621651385147339788537690