L(s) = 1 | − 0.883·2-s − 1.21·4-s + (−0.803 − 1.39i)5-s + (0.969 − 2.46i)7-s + 2.84·8-s + (0.709 + 1.22i)10-s + (2.72 + 4.71i)11-s + (−3.59 − 0.322i)13-s + (−0.855 + 2.17i)14-s − 0.0728·16-s + 4.79·17-s + (2.78 − 4.82i)19-s + (0.979 + 1.69i)20-s + (−2.40 − 4.16i)22-s − 7.52·23-s + ⋯ |
L(s) = 1 | − 0.624·2-s − 0.609·4-s + (−0.359 − 0.622i)5-s + (0.366 − 0.930i)7-s + 1.00·8-s + (0.224 + 0.388i)10-s + (0.821 + 1.42i)11-s + (−0.995 − 0.0894i)13-s + (−0.228 + 0.581i)14-s − 0.0182·16-s + 1.16·17-s + (0.638 − 1.10i)19-s + (0.219 + 0.379i)20-s + (−0.513 − 0.888i)22-s − 1.56·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.269 + 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.269 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.437687 - 0.576773i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.437687 - 0.576773i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.969 + 2.46i)T \) |
| 13 | \( 1 + (3.59 + 0.322i)T \) |
good | 2 | \( 1 + 0.883T + 2T^{2} \) |
| 5 | \( 1 + (0.803 + 1.39i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.72 - 4.71i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 4.79T + 17T^{2} \) |
| 19 | \( 1 + (-2.78 + 4.82i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 7.52T + 23T^{2} \) |
| 29 | \( 1 + (-0.471 + 0.816i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.198 - 0.344i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 3.86T + 37T^{2} \) |
| 41 | \( 1 + (-2.37 + 4.10i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.30 + 9.18i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.143 + 0.247i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.0573 - 0.0993i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 9.23T + 59T^{2} \) |
| 61 | \( 1 + (-5.19 + 8.99i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.38 + 4.13i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6.93 + 12.0i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (3.63 - 6.29i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.55 + 4.42i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 2.73T + 83T^{2} \) |
| 89 | \( 1 + 4.28T + 89T^{2} \) |
| 97 | \( 1 + (-0.544 - 0.943i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.949071345352552204951997728672, −9.247682672002424567595607709183, −8.275215281208980845511024267668, −7.52423704575819031908847653699, −6.97384593713557159469734161101, −5.21222848608086088772438295577, −4.56425780435600383563637606009, −3.80745405040163560334215584601, −1.79812400917317567479868309621, −0.50722712988369440400906556064,
1.38692494384442310899113769508, 3.04847511194694640814365508312, 3.99326579611781708729764452670, 5.31889214099393906406658125636, 6.02212643428887298608145821199, 7.35942342363354751569072838615, 8.114025319983455230579104979204, 8.684505668747911965908393337963, 9.716759182373987528165565062290, 10.16737611483623907354373368280