L(s) = 1 | − 1.85·2-s + 1.45·4-s + (−1.41 − 2.45i)5-s + (−2.59 + 0.514i)7-s + 1.01·8-s + (2.63 + 4.56i)10-s + (−2.68 − 4.64i)11-s + (−1.80 + 3.11i)13-s + (4.82 − 0.955i)14-s − 4.79·16-s + 0.835·17-s + (1.94 − 3.36i)19-s + (−2.05 − 3.56i)20-s + (4.98 + 8.62i)22-s − 4.10·23-s + ⋯ |
L(s) = 1 | − 1.31·2-s + 0.726·4-s + (−0.633 − 1.09i)5-s + (−0.980 + 0.194i)7-s + 0.359·8-s + (0.832 + 1.44i)10-s + (−0.808 − 1.40i)11-s + (−0.501 + 0.865i)13-s + (1.28 − 0.255i)14-s − 1.19·16-s + 0.202·17-s + (0.445 − 0.771i)19-s + (−0.460 − 0.797i)20-s + (1.06 + 1.83i)22-s − 0.856·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.137 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.137 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.115455 + 0.100568i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.115455 + 0.100568i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (2.59 - 0.514i)T \) |
| 13 | \( 1 + (1.80 - 3.11i)T \) |
good | 2 | \( 1 + 1.85T + 2T^{2} \) |
| 5 | \( 1 + (1.41 + 2.45i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.68 + 4.64i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 0.835T + 17T^{2} \) |
| 19 | \( 1 + (-1.94 + 3.36i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 4.10T + 23T^{2} \) |
| 29 | \( 1 + (2.20 - 3.82i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.678 - 1.17i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 9.07T + 37T^{2} \) |
| 41 | \( 1 + (-1.58 + 2.75i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.24 - 2.16i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.0166 + 0.0288i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5.18 - 8.97i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 1.74T + 59T^{2} \) |
| 61 | \( 1 + (3.04 - 5.26i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.41 + 2.44i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.26 - 12.5i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (2.16 - 3.74i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.96 + 5.13i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 3.75T + 83T^{2} \) |
| 89 | \( 1 + 12.3T + 89T^{2} \) |
| 97 | \( 1 + (-8.56 - 14.8i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20005994905799972853652059723, −9.240362233444658742947829487163, −8.957962504211634844048759362225, −8.054199550064813085995039442980, −7.40923282618668161515044131063, −6.24055086402896077330937403849, −5.12354865269730525482719557985, −4.04515378535566896942115001504, −2.67181794748105111770497649997, −0.927526204719527733358998371918,
0.15350624314857936314446543249, 2.20252546590481699794502981116, 3.28745854674691809959824750243, 4.49436000801446761901889257171, 5.96132864000783934736510918288, 7.06870890791259711975496682933, 7.61340663888171299716417292496, 8.074679062695815635441665145312, 9.687424024601462381516641383000, 9.812178685082257763153530148466