L(s) = 1 | − 2.20·2-s + 2.85·4-s + (−1.98 + 3.44i)5-s + (1.55 − 2.14i)7-s − 1.87·8-s + (4.37 − 7.58i)10-s + (2.61 − 4.53i)11-s + (0.0218 + 3.60i)13-s + (−3.42 + 4.71i)14-s − 1.56·16-s − 2.66·17-s + (−3.23 − 5.60i)19-s + (−5.67 + 9.82i)20-s + (−5.76 + 9.99i)22-s − 0.120·23-s + ⋯ |
L(s) = 1 | − 1.55·2-s + 1.42·4-s + (−0.888 + 1.53i)5-s + (0.587 − 0.809i)7-s − 0.664·8-s + (1.38 − 2.39i)10-s + (0.789 − 1.36i)11-s + (0.00607 + 0.999i)13-s + (−0.914 + 1.26i)14-s − 0.391·16-s − 0.646·17-s + (−0.742 − 1.28i)19-s + (−1.26 + 2.19i)20-s + (−1.23 + 2.13i)22-s − 0.0252·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.686 + 0.726i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.686 + 0.726i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.463227 - 0.199613i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.463227 - 0.199613i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-1.55 + 2.14i)T \) |
| 13 | \( 1 + (-0.0218 - 3.60i)T \) |
good | 2 | \( 1 + 2.20T + 2T^{2} \) |
| 5 | \( 1 + (1.98 - 3.44i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.61 + 4.53i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 2.66T + 17T^{2} \) |
| 19 | \( 1 + (3.23 + 5.60i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 0.120T + 23T^{2} \) |
| 29 | \( 1 + (0.968 + 1.67i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.99 - 6.92i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 3.65T + 37T^{2} \) |
| 41 | \( 1 + (4.53 + 7.86i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.749 + 1.29i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.08 + 5.34i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.337 + 0.585i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 2.22T + 59T^{2} \) |
| 61 | \( 1 + (-2.53 - 4.38i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.99 + 12.1i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.13 + 8.89i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (0.362 + 0.627i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.09 - 3.62i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 13.7T + 83T^{2} \) |
| 89 | \( 1 - 0.253T + 89T^{2} \) |
| 97 | \( 1 + (-6.46 + 11.1i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32368683635504035047250112612, −9.087409665540056500873961681964, −8.506298306703693749025109237646, −7.65406745164295453507765453791, −6.69721021416464398559272448136, −6.65595460109800923871739562603, −4.45054947123937775094968426164, −3.48759117519836015055995979204, −2.16283735773547119963745849421, −0.50629919386508437415357327006,
1.10271216518653431390637312108, 2.11069262779724822545810085923, 4.15873240768776954590868263847, 4.87493913167656229115803752883, 6.15409696075083900434043729622, 7.47468847473881071416110343218, 8.134247850935647330301042274318, 8.532230698254181774232738116066, 9.390591706152215710984209026339, 9.950434323333121027301646355200