L(s) = 1 | + 2.11·2-s + 2.47·4-s + (−1.28 + 2.22i)5-s + (−2.36 + 1.18i)7-s + 1.01·8-s + (−2.71 + 4.70i)10-s + (−0.879 + 1.52i)11-s + (−0.451 + 3.57i)13-s + (−5.01 + 2.50i)14-s − 2.81·16-s + 7.50·17-s + (1.80 + 3.11i)19-s + (−3.18 + 5.51i)20-s + (−1.86 + 3.22i)22-s + 0.900·23-s + ⋯ |
L(s) = 1 | + 1.49·2-s + 1.23·4-s + (−0.574 + 0.994i)5-s + (−0.894 + 0.446i)7-s + 0.358·8-s + (−0.859 + 1.48i)10-s + (−0.265 + 0.459i)11-s + (−0.125 + 0.992i)13-s + (−1.33 + 0.668i)14-s − 0.703·16-s + 1.81·17-s + (0.413 + 0.715i)19-s + (−0.711 + 1.23i)20-s + (−0.397 + 0.687i)22-s + 0.187·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.144 - 0.989i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.144 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.60737 + 1.85959i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.60737 + 1.85959i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (2.36 - 1.18i)T \) |
| 13 | \( 1 + (0.451 - 3.57i)T \) |
good | 2 | \( 1 - 2.11T + 2T^{2} \) |
| 5 | \( 1 + (1.28 - 2.22i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.879 - 1.52i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 7.50T + 17T^{2} \) |
| 19 | \( 1 + (-1.80 - 3.11i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 0.900T + 23T^{2} \) |
| 29 | \( 1 + (1.25 + 2.18i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.67 - 2.89i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 8.63T + 37T^{2} \) |
| 41 | \( 1 + (2.47 + 4.28i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.35 + 9.27i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.03 + 6.98i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.57 - 4.46i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 2.53T + 59T^{2} \) |
| 61 | \( 1 + (-3.66 - 6.34i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.52 - 2.63i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.86 + 11.8i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-7.32 - 12.6i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.05 - 7.02i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 6.42T + 83T^{2} \) |
| 89 | \( 1 - 13.6T + 89T^{2} \) |
| 97 | \( 1 + (4.95 - 8.58i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57854157048866709615193106576, −9.869054661691551447588844946010, −8.790585274314244455704937452309, −7.35344412858059452737705452343, −6.93657780190533602167759653172, −5.89455377424856061463724831363, −5.20325730951750949711737533065, −3.80427255623158626174433025898, −3.39894321027351959014784968853, −2.31879274903250605189990002072,
0.74241090848725569070366321086, 3.01253101946028495738284148745, 3.51896022163045980128105819436, 4.65714456118588541842977631930, 5.37375400626235193519223304691, 6.14250181959698183986847953980, 7.31070840776234587442478057295, 8.102029946876461765884575815979, 9.197610672616173808802257664667, 10.10544057964038042391759659922