L(s) = 1 | + 1.85·2-s + 1.45·4-s + (1.41 − 2.45i)5-s + (−2.59 − 0.514i)7-s − 1.01·8-s + (2.63 − 4.56i)10-s + (2.68 − 4.64i)11-s + (−1.80 − 3.11i)13-s + (−4.82 − 0.955i)14-s − 4.79·16-s − 0.835·17-s + (1.94 + 3.36i)19-s + (2.05 − 3.56i)20-s + (4.98 − 8.62i)22-s + 4.10·23-s + ⋯ |
L(s) = 1 | + 1.31·2-s + 0.726·4-s + (0.633 − 1.09i)5-s + (−0.980 − 0.194i)7-s − 0.359·8-s + (0.832 − 1.44i)10-s + (0.808 − 1.40i)11-s + (−0.501 − 0.865i)13-s + (−1.28 − 0.255i)14-s − 1.19·16-s − 0.202·17-s + (0.445 + 0.771i)19-s + (0.460 − 0.797i)20-s + (1.06 − 1.83i)22-s + 0.856·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.137 + 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.137 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.06817 - 1.80148i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.06817 - 1.80148i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (2.59 + 0.514i)T \) |
| 13 | \( 1 + (1.80 + 3.11i)T \) |
good | 2 | \( 1 - 1.85T + 2T^{2} \) |
| 5 | \( 1 + (-1.41 + 2.45i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.68 + 4.64i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 0.835T + 17T^{2} \) |
| 19 | \( 1 + (-1.94 - 3.36i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 4.10T + 23T^{2} \) |
| 29 | \( 1 + (-2.20 - 3.82i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.678 + 1.17i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 9.07T + 37T^{2} \) |
| 41 | \( 1 + (1.58 + 2.75i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.24 + 2.16i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.0166 + 0.0288i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.18 - 8.97i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 1.74T + 59T^{2} \) |
| 61 | \( 1 + (3.04 + 5.26i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.41 - 2.44i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.26 - 12.5i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (2.16 + 3.74i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.96 - 5.13i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.75T + 83T^{2} \) |
| 89 | \( 1 - 12.3T + 89T^{2} \) |
| 97 | \( 1 + (-8.56 + 14.8i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.976116145996928414950155984506, −9.144341317778045421628300878286, −8.585868120211073446538899725823, −7.15483411676003205327393924229, −5.97439077725329640671624100300, −5.72335761336631657554840391274, −4.68500898652609831430988960432, −3.63656859905629865265520937322, −2.84239614340077620739795179023, −0.904015663620155247033369539779,
2.26785237566122549848172805727, 2.98438888477594891623488164886, 4.13286806033564515533411581830, 4.94886783740188969560996452465, 6.20530171573989189130127364498, 6.65565179619101266653183814798, 7.26371896226612121499438992376, 9.203637443946128706654707253087, 9.506719677362625151721374607269, 10.44141067326292987062525021389