L(s) = 1 | − 2.68·2-s + 5.20·4-s + (−0.261 + 0.452i)5-s + (0.345 + 2.62i)7-s − 8.61·8-s + (0.701 − 1.21i)10-s + (0.747 − 1.29i)11-s + (−0.735 − 3.52i)13-s + (−0.926 − 7.04i)14-s + 12.7·16-s + 1.84·17-s + (−1.75 − 3.03i)19-s + (−1.36 + 2.35i)20-s + (−2.00 + 3.47i)22-s + 7.87·23-s + ⋯ |
L(s) = 1 | − 1.89·2-s + 2.60·4-s + (−0.116 + 0.202i)5-s + (0.130 + 0.991i)7-s − 3.04·8-s + (0.221 − 0.384i)10-s + (0.225 − 0.390i)11-s + (−0.203 − 0.979i)13-s + (−0.247 − 1.88i)14-s + 3.17·16-s + 0.446·17-s + (−0.401 − 0.696i)19-s + (−0.304 + 0.527i)20-s + (−0.427 + 0.740i)22-s + 1.64·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.143i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 - 0.143i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.641973 + 0.0463319i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.641973 + 0.0463319i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.345 - 2.62i)T \) |
| 13 | \( 1 + (0.735 + 3.52i)T \) |
good | 2 | \( 1 + 2.68T + 2T^{2} \) |
| 5 | \( 1 + (0.261 - 0.452i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.747 + 1.29i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 1.84T + 17T^{2} \) |
| 19 | \( 1 + (1.75 + 3.03i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 7.87T + 23T^{2} \) |
| 29 | \( 1 + (0.977 + 1.69i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.36 + 4.09i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 5.37T + 37T^{2} \) |
| 41 | \( 1 + (3.34 + 5.80i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.32 + 4.02i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.75 - 9.97i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.85 - 8.40i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 9.87T + 59T^{2} \) |
| 61 | \( 1 + (-0.254 - 0.441i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.65 - 2.86i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.250 + 0.434i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-7.65 - 13.2i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.42 + 9.38i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 7.77T + 83T^{2} \) |
| 89 | \( 1 - 15.1T + 89T^{2} \) |
| 97 | \( 1 + (0.483 - 0.837i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09459407267167983556258088169, −9.171335398149233092370681089760, −8.803168394090574265162192907573, −7.85764944841376034278876126299, −7.18593914108332482584090671209, −6.18765646737221128322502534490, −5.29682686660611788583116904909, −3.18592275019544496205877758723, −2.35781123035376532944278463706, −0.857065293846844212762372408106,
0.897952805221499140167247468065, 1.98240748473547279324316057661, 3.47318800007181914498303153456, 4.88505422972953919783609423714, 6.53422761802695866588024246464, 6.95706251090066073076653844878, 7.83776590479793795023494569183, 8.574834472767261344872587085110, 9.392005296375252339648497580049, 10.06757500065337807671367746085