| L(s) = 1 | + (−1.64 + 0.441i)2-s + (0.784 − 0.453i)4-s + (−1.35 − 0.363i)5-s + (0.501 + 2.59i)7-s + (1.31 − 1.31i)8-s + 2.39·10-s + (−1.07 + 1.07i)11-s + (1.37 − 3.33i)13-s + (−1.97 − 4.05i)14-s + (−2.49 + 4.32i)16-s + (2.58 + 4.47i)17-s + (3.42 − 3.42i)19-s + (−1.23 + 0.329i)20-s + (1.29 − 2.23i)22-s + (−1.86 − 1.07i)23-s + ⋯ |
| L(s) = 1 | + (−1.16 + 0.311i)2-s + (0.392 − 0.226i)4-s + (−0.607 − 0.162i)5-s + (0.189 + 0.981i)7-s + (0.466 − 0.466i)8-s + 0.758·10-s + (−0.323 + 0.323i)11-s + (0.380 − 0.924i)13-s + (−0.527 − 1.08i)14-s + (−0.623 + 1.08i)16-s + (0.626 + 1.08i)17-s + (0.786 − 0.786i)19-s + (−0.275 + 0.0737i)20-s + (0.275 − 0.477i)22-s + (−0.388 − 0.224i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.470 - 0.882i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.470 - 0.882i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.272868 + 0.454521i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.272868 + 0.454521i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.501 - 2.59i)T \) |
| 13 | \( 1 + (-1.37 + 3.33i)T \) |
| good | 2 | \( 1 + (1.64 - 0.441i)T + (1.73 - i)T^{2} \) |
| 5 | \( 1 + (1.35 + 0.363i)T + (4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (1.07 - 1.07i)T - 11iT^{2} \) |
| 17 | \( 1 + (-2.58 - 4.47i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.42 + 3.42i)T - 19iT^{2} \) |
| 23 | \( 1 + (1.86 + 1.07i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.744 - 1.28i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.506 - 1.89i)T + (-26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (-2.45 - 9.16i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-6.34 - 1.70i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (7.27 + 4.19i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.66 - 6.20i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (1.87 - 3.24i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.19 - 8.17i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 - 3.23iT - 61T^{2} \) |
| 67 | \( 1 + (-9.21 - 9.21i)T + 67iT^{2} \) |
| 71 | \( 1 + (-2.71 + 0.726i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (14.2 - 3.82i)T + (63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-3.67 - 6.36i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.0684 + 0.0684i)T - 83iT^{2} \) |
| 89 | \( 1 + (10.7 - 2.88i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-3.39 - 12.6i)T + (-84.0 + 48.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23964161472386168659673599045, −9.606684883864909003513165152935, −8.552203216791271773402897189119, −8.187291040104827777925256778724, −7.48550493378909059715723129867, −6.33210336533320947445649708877, −5.33335016852759866149861334303, −4.18742056512278551835612380307, −2.88254425636839650841282370790, −1.25234864471684670365226122431,
0.45092143903181107289101705071, 1.75884670471141682925639050432, 3.37409827080591950053331148242, 4.37104684470833576306908757047, 5.51703881993370529116920614340, 6.92701203422336915666836882337, 7.73665683657091673022625595818, 8.099737697945445731760947542596, 9.364754210777866561367196843183, 9.793390350560618926187853887691