Properties

Label 2-816-1.1-c3-0-18
Degree $2$
Conductor $816$
Sign $1$
Analytic cond. $48.1455$
Root an. cond. $6.93870$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 16·5-s − 34·7-s + 9·9-s + 48·11-s + 58·13-s + 48·15-s − 17·17-s − 20·19-s − 102·21-s − 58·23-s + 131·25-s + 27·27-s + 218·31-s + 144·33-s − 544·35-s + 184·37-s + 174·39-s − 138·41-s − 148·43-s + 144·45-s + 516·47-s + 813·49-s − 51·51-s − 162·53-s + 768·55-s − 60·57-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.43·5-s − 1.83·7-s + 1/3·9-s + 1.31·11-s + 1.23·13-s + 0.826·15-s − 0.242·17-s − 0.241·19-s − 1.05·21-s − 0.525·23-s + 1.04·25-s + 0.192·27-s + 1.26·31-s + 0.759·33-s − 2.62·35-s + 0.817·37-s + 0.714·39-s − 0.525·41-s − 0.524·43-s + 0.477·45-s + 1.60·47-s + 2.37·49-s − 0.140·51-s − 0.419·53-s + 1.88·55-s − 0.139·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(816\)    =    \(2^{4} \cdot 3 \cdot 17\)
Sign: $1$
Analytic conductor: \(48.1455\)
Root analytic conductor: \(6.93870\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 816,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.181079685\)
\(L(\frac12)\) \(\approx\) \(3.181079685\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
17 \( 1 + p T \)
good5 \( 1 - 16 T + p^{3} T^{2} \)
7 \( 1 + 34 T + p^{3} T^{2} \)
11 \( 1 - 48 T + p^{3} T^{2} \)
13 \( 1 - 58 T + p^{3} T^{2} \)
19 \( 1 + 20 T + p^{3} T^{2} \)
23 \( 1 + 58 T + p^{3} T^{2} \)
29 \( 1 + p^{3} T^{2} \)
31 \( 1 - 218 T + p^{3} T^{2} \)
37 \( 1 - 184 T + p^{3} T^{2} \)
41 \( 1 + 138 T + p^{3} T^{2} \)
43 \( 1 + 148 T + p^{3} T^{2} \)
47 \( 1 - 516 T + p^{3} T^{2} \)
53 \( 1 + 162 T + p^{3} T^{2} \)
59 \( 1 - 180 T + p^{3} T^{2} \)
61 \( 1 - 152 T + p^{3} T^{2} \)
67 \( 1 - 956 T + p^{3} T^{2} \)
71 \( 1 - 538 T + p^{3} T^{2} \)
73 \( 1 + 462 T + p^{3} T^{2} \)
79 \( 1 + 390 T + p^{3} T^{2} \)
83 \( 1 + 1268 T + p^{3} T^{2} \)
89 \( 1 + 770 T + p^{3} T^{2} \)
97 \( 1 - 494 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.811779945015893893702090941985, −9.122368328359962532073052796973, −8.517507013343752752927762241117, −6.91581136453736567167375056743, −6.32736450995507122001547863495, −5.85130466298833608001840679402, −4.14740008167021153923327752951, −3.29667745622548910715738108794, −2.24838430323256907210298650624, −1.01538303668818242991611084542, 1.01538303668818242991611084542, 2.24838430323256907210298650624, 3.29667745622548910715738108794, 4.14740008167021153923327752951, 5.85130466298833608001840679402, 6.32736450995507122001547863495, 6.91581136453736567167375056743, 8.517507013343752752927762241117, 9.122368328359962532073052796973, 9.811779945015893893702090941985

Graph of the $Z$-function along the critical line