L(s) = 1 | − i·3-s + 3i·5-s − 2i·7-s − 9-s + 5i·11-s − 13-s + 3·15-s + (4 + i)17-s − 5·19-s − 2·21-s + i·23-s − 4·25-s + i·27-s + 6i·29-s + 10i·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 1.34i·5-s − 0.755i·7-s − 0.333·9-s + 1.50i·11-s − 0.277·13-s + 0.774·15-s + (0.970 + 0.242i)17-s − 1.14·19-s − 0.436·21-s + 0.208i·23-s − 0.800·25-s + 0.192i·27-s + 1.11i·29-s + 1.79i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.242 - 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.242 - 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.990857 + 0.773638i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.990857 + 0.773638i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 17 | \( 1 + (-4 - i)T \) |
good | 5 | \( 1 - 3iT - 5T^{2} \) |
| 7 | \( 1 + 2iT - 7T^{2} \) |
| 11 | \( 1 - 5iT - 11T^{2} \) |
| 13 | \( 1 + T + 13T^{2} \) |
| 19 | \( 1 + 5T + 19T^{2} \) |
| 23 | \( 1 - iT - 23T^{2} \) |
| 29 | \( 1 - 6iT - 29T^{2} \) |
| 31 | \( 1 - 10iT - 31T^{2} \) |
| 37 | \( 1 - 2iT - 37T^{2} \) |
| 41 | \( 1 + 5iT - 41T^{2} \) |
| 43 | \( 1 - T + 43T^{2} \) |
| 47 | \( 1 - 2T + 47T^{2} \) |
| 53 | \( 1 + 6T + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 10iT - 61T^{2} \) |
| 67 | \( 1 - 12T + 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + 6iT - 73T^{2} \) |
| 79 | \( 1 - 4iT - 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 + 8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45832679511651314997877971663, −9.864590189859577582501907147927, −8.610510041652422717039870300437, −7.43972904483132463953351437923, −7.11349142617662292711308784887, −6.40914557841078495951693162589, −5.10223503607140180997399836594, −3.89730163877048501169750124055, −2.82891727314457078693606793740, −1.65394988211164992103358705270,
0.62880148771316615454071715260, 2.41238201414587022170963397240, 3.73391526919344662324467991881, 4.71259043592036137598669427336, 5.61763308646537471282136554031, 6.16659899187124621080955562829, 7.951794712708468396030150483731, 8.415860271391059508335013084470, 9.210946037586103675852244490224, 9.818703722833984388435045176296