L(s) = 1 | + (0.707 − 0.707i)3-s + (−0.450 + 0.450i)5-s + (1.22 + 1.22i)7-s − 1.00i·9-s + (3.50 + 3.50i)11-s − 2.50·13-s + 0.636i·15-s + (2.17 + 3.50i)17-s + 0.950i·19-s + 1.72·21-s + (−1.50 − 1.50i)23-s + 4.59i·25-s + (−0.707 − 0.707i)27-s + (6.77 − 6.77i)29-s + (3.72 − 3.72i)31-s + ⋯ |
L(s) = 1 | + (0.408 − 0.408i)3-s + (−0.201 + 0.201i)5-s + (0.461 + 0.461i)7-s − 0.333i·9-s + (1.05 + 1.05i)11-s − 0.695·13-s + 0.164i·15-s + (0.528 + 0.849i)17-s + 0.218i·19-s + 0.377·21-s + (−0.312 − 0.312i)23-s + 0.918i·25-s + (−0.136 − 0.136i)27-s + (1.25 − 1.25i)29-s + (0.669 − 0.669i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.907 - 0.420i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.907 - 0.420i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.80328 + 0.397731i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.80328 + 0.397731i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 + (-2.17 - 3.50i)T \) |
good | 5 | \( 1 + (0.450 - 0.450i)T - 5iT^{2} \) |
| 7 | \( 1 + (-1.22 - 1.22i)T + 7iT^{2} \) |
| 11 | \( 1 + (-3.50 - 3.50i)T + 11iT^{2} \) |
| 13 | \( 1 + 2.50T + 13T^{2} \) |
| 19 | \( 1 - 0.950iT - 19T^{2} \) |
| 23 | \( 1 + (1.50 + 1.50i)T + 23iT^{2} \) |
| 29 | \( 1 + (-6.77 + 6.77i)T - 29iT^{2} \) |
| 31 | \( 1 + (-3.72 + 3.72i)T - 31iT^{2} \) |
| 37 | \( 1 + (6.00 - 6.00i)T - 37iT^{2} \) |
| 41 | \( 1 + (-4.89 - 4.89i)T + 41iT^{2} \) |
| 43 | \( 1 - 7.15iT - 43T^{2} \) |
| 47 | \( 1 - 8.10T + 47T^{2} \) |
| 53 | \( 1 + 6.44iT - 53T^{2} \) |
| 59 | \( 1 + 10.1iT - 59T^{2} \) |
| 61 | \( 1 + (-2.09 - 2.09i)T + 61iT^{2} \) |
| 67 | \( 1 + 7.70T + 67T^{2} \) |
| 71 | \( 1 + (0.271 - 0.271i)T - 71iT^{2} \) |
| 73 | \( 1 + (-4.60 + 4.60i)T - 73iT^{2} \) |
| 79 | \( 1 + (1.67 + 1.67i)T + 79iT^{2} \) |
| 83 | \( 1 - 13.3iT - 83T^{2} \) |
| 89 | \( 1 - 1.98T + 89T^{2} \) |
| 97 | \( 1 + (-2.15 + 2.15i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03645462799561041832080857365, −9.561073971487111365915120255945, −8.424502627814313304453301159310, −7.84336776885608924214230627574, −6.88457393969973200801917791883, −6.10454787241836819449902946390, −4.81478513261237432404537724830, −3.89964614911503571276269693089, −2.57685920146069715987458049866, −1.50131516098950595537578665258,
1.00793331181180064940047239585, 2.71507762367718925351404132423, 3.79628827284641426476410670252, 4.65858507581097523486093832551, 5.64258405221214830876080084682, 6.88149152909832185321866456793, 7.65191310960205352471809462451, 8.707025172787008271113653645930, 9.108917525876883819488576025071, 10.29065094204402369457165210032