L(s) = 1 | + (−0.707 + 0.707i)3-s + (−2.87 + 2.87i)5-s + (−0.652 − 0.652i)7-s − 1.00i·9-s + (−1.60 − 1.60i)11-s − 3.57·13-s − 4.06i·15-s + (3.79 − 1.60i)17-s − 1.72i·19-s + 0.922·21-s + (3.60 + 3.60i)23-s − 11.5i·25-s + (0.707 + 0.707i)27-s + (−1.55 + 1.55i)29-s + (2.92 − 2.92i)31-s + ⋯ |
L(s) = 1 | + (−0.408 + 0.408i)3-s + (−1.28 + 1.28i)5-s + (−0.246 − 0.246i)7-s − 0.333i·9-s + (−0.483 − 0.483i)11-s − 0.991·13-s − 1.04i·15-s + (0.921 − 0.389i)17-s − 0.396i·19-s + 0.201·21-s + (0.751 + 0.751i)23-s − 2.30i·25-s + (0.136 + 0.136i)27-s + (−0.289 + 0.289i)29-s + (0.524 − 0.524i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.273 + 0.961i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.273 + 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.329153 - 0.248509i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.329153 - 0.248509i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 + (-3.79 + 1.60i)T \) |
good | 5 | \( 1 + (2.87 - 2.87i)T - 5iT^{2} \) |
| 7 | \( 1 + (0.652 + 0.652i)T + 7iT^{2} \) |
| 11 | \( 1 + (1.60 + 1.60i)T + 11iT^{2} \) |
| 13 | \( 1 + 3.57T + 13T^{2} \) |
| 19 | \( 1 + 1.72iT - 19T^{2} \) |
| 23 | \( 1 + (-3.60 - 3.60i)T + 23iT^{2} \) |
| 29 | \( 1 + (1.55 - 1.55i)T - 29iT^{2} \) |
| 31 | \( 1 + (-2.92 + 2.92i)T - 31iT^{2} \) |
| 37 | \( 1 + (-4.21 + 4.21i)T - 37iT^{2} \) |
| 41 | \( 1 + (-3.57 - 3.57i)T + 41iT^{2} \) |
| 43 | \( 1 + 5.23iT - 43T^{2} \) |
| 47 | \( 1 + 6.96T + 47T^{2} \) |
| 53 | \( 1 + 2.69iT - 53T^{2} \) |
| 59 | \( 1 + 7.39iT - 59T^{2} \) |
| 61 | \( 1 + (2.75 + 2.75i)T + 61iT^{2} \) |
| 67 | \( 1 + 12.0T + 67T^{2} \) |
| 71 | \( 1 + (1.07 - 1.07i)T - 71iT^{2} \) |
| 73 | \( 1 + (-0.823 + 0.823i)T - 73iT^{2} \) |
| 79 | \( 1 + (8.40 + 8.40i)T + 79iT^{2} \) |
| 83 | \( 1 - 6.38iT - 83T^{2} \) |
| 89 | \( 1 + 10.3T + 89T^{2} \) |
| 97 | \( 1 + (10.2 - 10.2i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19908122526127243918002025049, −9.471586454196869597501286414864, −8.109918693298998384895094178920, −7.41094967342263745285956733960, −6.80340799671962340797086942639, −5.62652302378174852418396958702, −4.55939709822180851461717612582, −3.48199856112909601541863618059, −2.82057711066780867507976187735, −0.24453528253130609023158144419,
1.19110540717660399035610086035, 2.91077616825027051832905563423, 4.34035607344737556951965070688, 4.93332228189295757663443722207, 5.92187309941630296780568769088, 7.24320882737735894816162515309, 7.81489742706897361793444219199, 8.545403087273764036327871299632, 9.515464264388311864093121494162, 10.42883591751331254444137463878