Properties

Label 2-810-1.1-c3-0-41
Degree $2$
Conductor $810$
Sign $-1$
Analytic cond. $47.7915$
Root an. cond. $6.91314$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s + 5·5-s + 29.0·7-s − 8·8-s − 10·10-s + 9.76·11-s − 10.6·13-s − 58.1·14-s + 16·16-s − 93.9·17-s − 128.·19-s + 20·20-s − 19.5·22-s − 123.·23-s + 25·25-s + 21.3·26-s + 116.·28-s − 295.·29-s + 156.·31-s − 32·32-s + 187.·34-s + 145.·35-s − 400.·37-s + 257.·38-s − 40·40-s − 99.3·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.447·5-s + 1.57·7-s − 0.353·8-s − 0.316·10-s + 0.267·11-s − 0.227·13-s − 1.11·14-s + 0.250·16-s − 1.34·17-s − 1.55·19-s + 0.223·20-s − 0.189·22-s − 1.11·23-s + 0.200·25-s + 0.160·26-s + 0.785·28-s − 1.89·29-s + 0.904·31-s − 0.176·32-s + 0.947·34-s + 0.702·35-s − 1.77·37-s + 1.09·38-s − 0.158·40-s − 0.378·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(810\)    =    \(2 \cdot 3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(47.7915\)
Root analytic conductor: \(6.91314\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 810,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 \)
5 \( 1 - 5T \)
good7 \( 1 - 29.0T + 343T^{2} \)
11 \( 1 - 9.76T + 1.33e3T^{2} \)
13 \( 1 + 10.6T + 2.19e3T^{2} \)
17 \( 1 + 93.9T + 4.91e3T^{2} \)
19 \( 1 + 128.T + 6.85e3T^{2} \)
23 \( 1 + 123.T + 1.21e4T^{2} \)
29 \( 1 + 295.T + 2.43e4T^{2} \)
31 \( 1 - 156.T + 2.97e4T^{2} \)
37 \( 1 + 400.T + 5.06e4T^{2} \)
41 \( 1 + 99.3T + 6.89e4T^{2} \)
43 \( 1 + 30.9T + 7.95e4T^{2} \)
47 \( 1 - 223.T + 1.03e5T^{2} \)
53 \( 1 - 24.7T + 1.48e5T^{2} \)
59 \( 1 + 589.T + 2.05e5T^{2} \)
61 \( 1 + 81.9T + 2.26e5T^{2} \)
67 \( 1 + 226.T + 3.00e5T^{2} \)
71 \( 1 - 216.T + 3.57e5T^{2} \)
73 \( 1 - 333.T + 3.89e5T^{2} \)
79 \( 1 - 1.08e3T + 4.93e5T^{2} \)
83 \( 1 + 396.T + 5.71e5T^{2} \)
89 \( 1 + 473.T + 7.04e5T^{2} \)
97 \( 1 - 681.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.266372314763588171536681057387, −8.603424938840631967812126758421, −7.933469524646150373380918546744, −6.94390979365128848724572487025, −6.04143183843108051470431690959, −4.94799972125413111262300675163, −4.02130200457284300436999186864, −2.19407212586586882852183991995, −1.70589313136048350216159162725, 0, 1.70589313136048350216159162725, 2.19407212586586882852183991995, 4.02130200457284300436999186864, 4.94799972125413111262300675163, 6.04143183843108051470431690959, 6.94390979365128848724572487025, 7.933469524646150373380918546744, 8.603424938840631967812126758421, 9.266372314763588171536681057387

Graph of the $Z$-function along the critical line