Properties

Label 2-3e4-1.1-c5-0-13
Degree $2$
Conductor $81$
Sign $1$
Analytic cond. $12.9910$
Root an. cond. $3.60431$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.92·2-s + 66.4·4-s + 47.3·5-s − 2.03·7-s + 342.·8-s + 469.·10-s − 183.·11-s + 729.·13-s − 20.1·14-s + 1.26e3·16-s − 1.21e3·17-s − 473.·19-s + 3.14e3·20-s − 1.82e3·22-s + 3.61e3·23-s − 886.·25-s + 7.23e3·26-s − 134.·28-s + 1.32e3·29-s − 5.18e3·31-s + 1.62e3·32-s − 1.20e4·34-s − 96.0·35-s − 1.47e4·37-s − 4.69e3·38-s + 1.61e4·40-s − 6.31e3·41-s + ⋯
L(s)  = 1  + 1.75·2-s + 2.07·4-s + 0.846·5-s − 0.0156·7-s + 1.88·8-s + 1.48·10-s − 0.457·11-s + 1.19·13-s − 0.0274·14-s + 1.23·16-s − 1.01·17-s − 0.300·19-s + 1.75·20-s − 0.803·22-s + 1.42·23-s − 0.283·25-s + 2.09·26-s − 0.0325·28-s + 0.292·29-s − 0.968·31-s + 0.281·32-s − 1.78·34-s − 0.0132·35-s − 1.76·37-s − 0.527·38-s + 1.59·40-s − 0.587·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $1$
Analytic conductor: \(12.9910\)
Root analytic conductor: \(3.60431\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(5.362485672\)
\(L(\frac12)\) \(\approx\) \(5.362485672\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 9.92T + 32T^{2} \)
5 \( 1 - 47.3T + 3.12e3T^{2} \)
7 \( 1 + 2.03T + 1.68e4T^{2} \)
11 \( 1 + 183.T + 1.61e5T^{2} \)
13 \( 1 - 729.T + 3.71e5T^{2} \)
17 \( 1 + 1.21e3T + 1.41e6T^{2} \)
19 \( 1 + 473.T + 2.47e6T^{2} \)
23 \( 1 - 3.61e3T + 6.43e6T^{2} \)
29 \( 1 - 1.32e3T + 2.05e7T^{2} \)
31 \( 1 + 5.18e3T + 2.86e7T^{2} \)
37 \( 1 + 1.47e4T + 6.93e7T^{2} \)
41 \( 1 + 6.31e3T + 1.15e8T^{2} \)
43 \( 1 - 6.13e3T + 1.47e8T^{2} \)
47 \( 1 + 3.16e3T + 2.29e8T^{2} \)
53 \( 1 - 1.22e4T + 4.18e8T^{2} \)
59 \( 1 - 2.95e4T + 7.14e8T^{2} \)
61 \( 1 + 4.03e4T + 8.44e8T^{2} \)
67 \( 1 - 2.34e4T + 1.35e9T^{2} \)
71 \( 1 - 123.T + 1.80e9T^{2} \)
73 \( 1 - 3.52e4T + 2.07e9T^{2} \)
79 \( 1 + 4.81e4T + 3.07e9T^{2} \)
83 \( 1 + 1.03e4T + 3.93e9T^{2} \)
89 \( 1 - 4.25e4T + 5.58e9T^{2} \)
97 \( 1 - 9.86e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.35418281511745110465052884949, −12.81310639765973884250458484306, −11.40417746819265014992767181103, −10.55718670715410987686197140764, −8.844681727226755833252423371855, −6.93982598025648920719091652752, −5.95069203559678384691961081154, −4.90503067824908720958695030086, −3.43828729503495798370368934469, −1.97498695601199816331444717692, 1.97498695601199816331444717692, 3.43828729503495798370368934469, 4.90503067824908720958695030086, 5.95069203559678384691961081154, 6.93982598025648920719091652752, 8.844681727226755833252423371855, 10.55718670715410987686197140764, 11.40417746819265014992767181103, 12.81310639765973884250458484306, 13.35418281511745110465052884949

Graph of the $Z$-function along the critical line