Properties

Label 2-3e4-1.1-c5-0-1
Degree $2$
Conductor $81$
Sign $1$
Analytic cond. $12.9910$
Root an. cond. $3.60431$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.95·2-s − 23.2·4-s − 64.8·5-s − 160.·7-s + 163.·8-s + 191.·10-s + 206.·11-s − 65.7·13-s + 473.·14-s + 262.·16-s + 601.·17-s − 2.00e3·19-s + 1.50e3·20-s − 609.·22-s + 4.36e3·23-s + 1.08e3·25-s + 194.·26-s + 3.72e3·28-s + 934.·29-s + 5.25e3·31-s − 6.00e3·32-s − 1.77e3·34-s + 1.03e4·35-s + 5.68e3·37-s + 5.91e3·38-s − 1.05e4·40-s + 6.44e3·41-s + ⋯
L(s)  = 1  − 0.522·2-s − 0.727·4-s − 1.16·5-s − 1.23·7-s + 0.901·8-s + 0.605·10-s + 0.514·11-s − 0.107·13-s + 0.645·14-s + 0.256·16-s + 0.504·17-s − 1.27·19-s + 0.843·20-s − 0.268·22-s + 1.72·23-s + 0.345·25-s + 0.0563·26-s + 0.898·28-s + 0.206·29-s + 0.981·31-s − 1.03·32-s − 0.263·34-s + 1.43·35-s + 0.682·37-s + 0.664·38-s − 1.04·40-s + 0.598·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $1$
Analytic conductor: \(12.9910\)
Root analytic conductor: \(3.60431\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.5840509827\)
\(L(\frac12)\) \(\approx\) \(0.5840509827\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 2.95T + 32T^{2} \)
5 \( 1 + 64.8T + 3.12e3T^{2} \)
7 \( 1 + 160.T + 1.68e4T^{2} \)
11 \( 1 - 206.T + 1.61e5T^{2} \)
13 \( 1 + 65.7T + 3.71e5T^{2} \)
17 \( 1 - 601.T + 1.41e6T^{2} \)
19 \( 1 + 2.00e3T + 2.47e6T^{2} \)
23 \( 1 - 4.36e3T + 6.43e6T^{2} \)
29 \( 1 - 934.T + 2.05e7T^{2} \)
31 \( 1 - 5.25e3T + 2.86e7T^{2} \)
37 \( 1 - 5.68e3T + 6.93e7T^{2} \)
41 \( 1 - 6.44e3T + 1.15e8T^{2} \)
43 \( 1 + 2.80e3T + 1.47e8T^{2} \)
47 \( 1 + 7.81e3T + 2.29e8T^{2} \)
53 \( 1 + 3.22e4T + 4.18e8T^{2} \)
59 \( 1 + 1.56e4T + 7.14e8T^{2} \)
61 \( 1 - 2.23e4T + 8.44e8T^{2} \)
67 \( 1 + 1.89e4T + 1.35e9T^{2} \)
71 \( 1 - 4.67e4T + 1.80e9T^{2} \)
73 \( 1 - 4.53e4T + 2.07e9T^{2} \)
79 \( 1 + 3.12e4T + 3.07e9T^{2} \)
83 \( 1 - 6.18e4T + 3.93e9T^{2} \)
89 \( 1 - 1.21e4T + 5.58e9T^{2} \)
97 \( 1 - 7.35e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.16910211913300131824401916142, −12.42958028367456118707650436541, −11.07672424817775170751142692805, −9.857253644250702071694358371824, −8.897009295051039125021416536729, −7.81928360554241827883556204854, −6.53665570613410945791263685390, −4.57841166321421870250052315753, −3.38462259905508809332924363796, −0.61970476363678776205800583398, 0.61970476363678776205800583398, 3.38462259905508809332924363796, 4.57841166321421870250052315753, 6.53665570613410945791263685390, 7.81928360554241827883556204854, 8.897009295051039125021416536729, 9.857253644250702071694358371824, 11.07672424817775170751142692805, 12.42958028367456118707650436541, 13.16910211913300131824401916142

Graph of the $Z$-function along the critical line