Properties

Label 2-3e4-1.1-c5-0-16
Degree $2$
Conductor $81$
Sign $-1$
Analytic cond. $12.9910$
Root an. cond. $3.60431$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.54·2-s + 24.9·4-s − 87.4·5-s − 41.2·7-s − 52.9·8-s − 660.·10-s − 7.68·11-s − 605.·13-s − 311.·14-s − 1.19e3·16-s − 566.·17-s + 2.06e3·19-s − 2.18e3·20-s − 58.0·22-s − 274.·23-s + 4.51e3·25-s − 4.56e3·26-s − 1.02e3·28-s − 4.82e3·29-s + 4.46e3·31-s − 7.35e3·32-s − 4.27e3·34-s + 3.60e3·35-s + 242.·37-s + 1.55e4·38-s + 4.62e3·40-s − 3.50e3·41-s + ⋯
L(s)  = 1  + 1.33·2-s + 0.781·4-s − 1.56·5-s − 0.317·7-s − 0.292·8-s − 2.08·10-s − 0.0191·11-s − 0.993·13-s − 0.424·14-s − 1.17·16-s − 0.475·17-s + 1.30·19-s − 1.22·20-s − 0.0255·22-s − 0.108·23-s + 1.44·25-s − 1.32·26-s − 0.248·28-s − 1.06·29-s + 0.833·31-s − 1.27·32-s − 0.634·34-s + 0.497·35-s + 0.0291·37-s + 1.74·38-s + 0.457·40-s − 0.326·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $-1$
Analytic conductor: \(12.9910\)
Root analytic conductor: \(3.60431\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 81,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 7.54T + 32T^{2} \)
5 \( 1 + 87.4T + 3.12e3T^{2} \)
7 \( 1 + 41.2T + 1.68e4T^{2} \)
11 \( 1 + 7.68T + 1.61e5T^{2} \)
13 \( 1 + 605.T + 3.71e5T^{2} \)
17 \( 1 + 566.T + 1.41e6T^{2} \)
19 \( 1 - 2.06e3T + 2.47e6T^{2} \)
23 \( 1 + 274.T + 6.43e6T^{2} \)
29 \( 1 + 4.82e3T + 2.05e7T^{2} \)
31 \( 1 - 4.46e3T + 2.86e7T^{2} \)
37 \( 1 - 242.T + 6.93e7T^{2} \)
41 \( 1 + 3.50e3T + 1.15e8T^{2} \)
43 \( 1 - 8.53e3T + 1.47e8T^{2} \)
47 \( 1 + 1.79e4T + 2.29e8T^{2} \)
53 \( 1 - 2.02e3T + 4.18e8T^{2} \)
59 \( 1 - 2.01e3T + 7.14e8T^{2} \)
61 \( 1 + 2.83e4T + 8.44e8T^{2} \)
67 \( 1 - 4.18e4T + 1.35e9T^{2} \)
71 \( 1 + 3.26e4T + 1.80e9T^{2} \)
73 \( 1 - 3.28e4T + 2.07e9T^{2} \)
79 \( 1 - 8.81e4T + 3.07e9T^{2} \)
83 \( 1 + 1.05e4T + 3.93e9T^{2} \)
89 \( 1 + 1.24e5T + 5.58e9T^{2} \)
97 \( 1 + 1.62e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75837576512546558505169562211, −11.97896496588734954748431642893, −11.24842328118685749490836546936, −9.479923214122250271905649566485, −7.921242555067643986472447417922, −6.81372253274253398346755417418, −5.17695417311365833691316772244, −4.09367036710691220640070084621, −3.00709668381469799242400735515, 0, 3.00709668381469799242400735515, 4.09367036710691220640070084621, 5.17695417311365833691316772244, 6.81372253274253398346755417418, 7.921242555067643986472447417922, 9.479923214122250271905649566485, 11.24842328118685749490836546936, 11.97896496588734954748431642893, 12.75837576512546558505169562211

Graph of the $Z$-function along the critical line