Properties

Label 2-3e4-1.1-c3-0-4
Degree $2$
Conductor $81$
Sign $-1$
Analytic cond. $4.77915$
Root an. cond. $2.18612$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.37·2-s + 11.1·4-s − 4.62·5-s + 12.1·7-s − 13.6·8-s + 20.2·10-s − 10.0·11-s − 48.5·13-s − 52.9·14-s − 29.3·16-s − 75.3·17-s − 116.·19-s − 51.4·20-s + 43.8·22-s + 38.0·23-s − 103.·25-s + 212.·26-s + 134.·28-s + 22.6·29-s + 30.1·31-s + 237.·32-s + 329.·34-s − 56.0·35-s + 130.·37-s + 507.·38-s + 63.0·40-s − 347.·41-s + ⋯
L(s)  = 1  − 1.54·2-s + 1.38·4-s − 0.413·5-s + 0.654·7-s − 0.602·8-s + 0.639·10-s − 0.274·11-s − 1.03·13-s − 1.01·14-s − 0.458·16-s − 1.07·17-s − 1.40·19-s − 0.575·20-s + 0.424·22-s + 0.345·23-s − 0.828·25-s + 1.60·26-s + 0.909·28-s + 0.144·29-s + 0.174·31-s + 1.31·32-s + 1.66·34-s − 0.270·35-s + 0.578·37-s + 2.16·38-s + 0.249·40-s − 1.32·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $-1$
Analytic conductor: \(4.77915\)
Root analytic conductor: \(2.18612\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 81,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 4.37T + 8T^{2} \)
5 \( 1 + 4.62T + 125T^{2} \)
7 \( 1 - 12.1T + 343T^{2} \)
11 \( 1 + 10.0T + 1.33e3T^{2} \)
13 \( 1 + 48.5T + 2.19e3T^{2} \)
17 \( 1 + 75.3T + 4.91e3T^{2} \)
19 \( 1 + 116.T + 6.85e3T^{2} \)
23 \( 1 - 38.0T + 1.21e4T^{2} \)
29 \( 1 - 22.6T + 2.43e4T^{2} \)
31 \( 1 - 30.1T + 2.97e4T^{2} \)
37 \( 1 - 130.T + 5.06e4T^{2} \)
41 \( 1 + 347.T + 6.89e4T^{2} \)
43 \( 1 - 26.7T + 7.95e4T^{2} \)
47 \( 1 + 460.T + 1.03e5T^{2} \)
53 \( 1 - 438.T + 1.48e5T^{2} \)
59 \( 1 + 8.36T + 2.05e5T^{2} \)
61 \( 1 + 82.0T + 2.26e5T^{2} \)
67 \( 1 - 683.T + 3.00e5T^{2} \)
71 \( 1 + 1.09e3T + 3.57e5T^{2} \)
73 \( 1 - 470.T + 3.89e5T^{2} \)
79 \( 1 - 486.T + 4.93e5T^{2} \)
83 \( 1 + 99.1T + 5.71e5T^{2} \)
89 \( 1 + 8.80T + 7.04e5T^{2} \)
97 \( 1 - 660.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.22108481913971931631577836250, −11.77377589333832168646177016946, −10.89513760914469573537954295692, −9.889093309361191149801700439886, −8.674933380711729500907866632007, −7.87727581625584982046037480331, −6.73927698132108676157735784772, −4.63075146327798786792425699523, −2.10838781592008252593949288477, 0, 2.10838781592008252593949288477, 4.63075146327798786792425699523, 6.73927698132108676157735784772, 7.87727581625584982046037480331, 8.674933380711729500907866632007, 9.889093309361191149801700439886, 10.89513760914469573537954295692, 11.77377589333832168646177016946, 13.22108481913971931631577836250

Graph of the $Z$-function along the critical line