Properties

Label 2-8092-1.1-c1-0-53
Degree $2$
Conductor $8092$
Sign $1$
Analytic cond. $64.6149$
Root an. cond. $8.03834$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.09·3-s + 3.70·5-s + 7-s + 1.40·9-s + 0.626·11-s + 0.872·13-s − 7.77·15-s + 7.62·19-s − 2.09·21-s + 1.64·23-s + 8.71·25-s + 3.34·27-s + 9.06·29-s − 1.14·31-s − 1.31·33-s + 3.70·35-s − 8.60·37-s − 1.83·39-s − 4.78·41-s + 3.44·43-s + 5.19·45-s + 9.39·47-s + 49-s − 13.2·53-s + 2.31·55-s − 15.9·57-s − 3.73·59-s + ⋯
L(s)  = 1  − 1.21·3-s + 1.65·5-s + 0.377·7-s + 0.467·9-s + 0.188·11-s + 0.242·13-s − 2.00·15-s + 1.74·19-s − 0.457·21-s + 0.342·23-s + 1.74·25-s + 0.644·27-s + 1.68·29-s − 0.205·31-s − 0.228·33-s + 0.625·35-s − 1.41·37-s − 0.293·39-s − 0.747·41-s + 0.525·43-s + 0.775·45-s + 1.37·47-s + 0.142·49-s − 1.82·53-s + 0.312·55-s − 2.11·57-s − 0.486·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8092\)    =    \(2^{2} \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(64.6149\)
Root analytic conductor: \(8.03834\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8092,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.258410150\)
\(L(\frac12)\) \(\approx\) \(2.258410150\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 \)
good3 \( 1 + 2.09T + 3T^{2} \)
5 \( 1 - 3.70T + 5T^{2} \)
11 \( 1 - 0.626T + 11T^{2} \)
13 \( 1 - 0.872T + 13T^{2} \)
19 \( 1 - 7.62T + 19T^{2} \)
23 \( 1 - 1.64T + 23T^{2} \)
29 \( 1 - 9.06T + 29T^{2} \)
31 \( 1 + 1.14T + 31T^{2} \)
37 \( 1 + 8.60T + 37T^{2} \)
41 \( 1 + 4.78T + 41T^{2} \)
43 \( 1 - 3.44T + 43T^{2} \)
47 \( 1 - 9.39T + 47T^{2} \)
53 \( 1 + 13.2T + 53T^{2} \)
59 \( 1 + 3.73T + 59T^{2} \)
61 \( 1 - 0.372T + 61T^{2} \)
67 \( 1 - 5.41T + 67T^{2} \)
71 \( 1 - 6.58T + 71T^{2} \)
73 \( 1 - 6.87T + 73T^{2} \)
79 \( 1 - 5.14T + 79T^{2} \)
83 \( 1 - 0.685T + 83T^{2} \)
89 \( 1 - 4.68T + 89T^{2} \)
97 \( 1 - 15.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69989736909254009786520258024, −6.76758386341777668827683056856, −6.40542845363873741208510673123, −5.65395489005520874108310520107, −5.19294421486560295165010532883, −4.75988476437987802872986071676, −3.42731546509180598342122864323, −2.55351764000380629095274759064, −1.52062208797326917665208480126, −0.872541074920551166068366314193, 0.872541074920551166068366314193, 1.52062208797326917665208480126, 2.55351764000380629095274759064, 3.42731546509180598342122864323, 4.75988476437987802872986071676, 5.19294421486560295165010532883, 5.65395489005520874108310520107, 6.40542845363873741208510673123, 6.76758386341777668827683056856, 7.69989736909254009786520258024

Graph of the $Z$-function along the critical line