Properties

Label 2-8092-1.1-c1-0-84
Degree $2$
Conductor $8092$
Sign $1$
Analytic cond. $64.6149$
Root an. cond. $8.03834$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.41·3-s + 2.69·5-s + 7-s + 8.65·9-s − 4.48·11-s − 4.84·13-s + 9.19·15-s + 2.43·19-s + 3.41·21-s + 0.501·23-s + 2.26·25-s + 19.2·27-s + 0.725·29-s + 9.53·31-s − 15.2·33-s + 2.69·35-s + 6.71·37-s − 16.5·39-s − 3.01·41-s + 7.93·43-s + 23.3·45-s + 2.74·47-s + 49-s + 1.98·53-s − 12.0·55-s + 8.32·57-s − 0.927·59-s + ⋯
L(s)  = 1  + 1.97·3-s + 1.20·5-s + 0.377·7-s + 2.88·9-s − 1.35·11-s − 1.34·13-s + 2.37·15-s + 0.559·19-s + 0.744·21-s + 0.104·23-s + 0.452·25-s + 3.71·27-s + 0.134·29-s + 1.71·31-s − 2.66·33-s + 0.455·35-s + 1.10·37-s − 2.65·39-s − 0.471·41-s + 1.21·43-s + 3.47·45-s + 0.399·47-s + 0.142·49-s + 0.273·53-s − 1.62·55-s + 1.10·57-s − 0.120·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8092\)    =    \(2^{2} \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(64.6149\)
Root analytic conductor: \(8.03834\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8092,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.852730034\)
\(L(\frac12)\) \(\approx\) \(5.852730034\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 \)
good3 \( 1 - 3.41T + 3T^{2} \)
5 \( 1 - 2.69T + 5T^{2} \)
11 \( 1 + 4.48T + 11T^{2} \)
13 \( 1 + 4.84T + 13T^{2} \)
19 \( 1 - 2.43T + 19T^{2} \)
23 \( 1 - 0.501T + 23T^{2} \)
29 \( 1 - 0.725T + 29T^{2} \)
31 \( 1 - 9.53T + 31T^{2} \)
37 \( 1 - 6.71T + 37T^{2} \)
41 \( 1 + 3.01T + 41T^{2} \)
43 \( 1 - 7.93T + 43T^{2} \)
47 \( 1 - 2.74T + 47T^{2} \)
53 \( 1 - 1.98T + 53T^{2} \)
59 \( 1 + 0.927T + 59T^{2} \)
61 \( 1 - 5.83T + 61T^{2} \)
67 \( 1 + 10.4T + 67T^{2} \)
71 \( 1 + 2.91T + 71T^{2} \)
73 \( 1 - 0.267T + 73T^{2} \)
79 \( 1 + 14.8T + 79T^{2} \)
83 \( 1 - 5.52T + 83T^{2} \)
89 \( 1 - 16.1T + 89T^{2} \)
97 \( 1 + 14.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.73391856880202214280109022889, −7.54136617314487741332690532248, −6.65506821397203659716146847476, −5.65509008390847226566420178286, −4.85150672329417503135389867539, −4.32337364292869710960555805539, −3.10130959853354998044658836994, −2.52715868093027594227449553502, −2.22454072501917530601237586183, −1.15075900641346740619424469823, 1.15075900641346740619424469823, 2.22454072501917530601237586183, 2.52715868093027594227449553502, 3.10130959853354998044658836994, 4.32337364292869710960555805539, 4.85150672329417503135389867539, 5.65509008390847226566420178286, 6.65506821397203659716146847476, 7.54136617314487741332690532248, 7.73391856880202214280109022889

Graph of the $Z$-function along the critical line