Properties

Label 2-8092-1.1-c1-0-97
Degree $2$
Conductor $8092$
Sign $1$
Analytic cond. $64.6149$
Root an. cond. $8.03834$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.17·3-s + 0.276·5-s + 7-s + 7.05·9-s + 1.52·11-s + 5.05·13-s + 0.875·15-s + 4.14·19-s + 3.17·21-s + 1.24·23-s − 4.92·25-s + 12.8·27-s + 7.81·29-s + 3.55·31-s + 4.82·33-s + 0.276·35-s − 12.0·37-s + 16.0·39-s + 3.43·41-s − 3.55·43-s + 1.94·45-s − 0.580·47-s + 49-s − 3.04·53-s + 0.419·55-s + 13.1·57-s − 10.4·59-s + ⋯
L(s)  = 1  + 1.83·3-s + 0.123·5-s + 0.377·7-s + 2.35·9-s + 0.458·11-s + 1.40·13-s + 0.226·15-s + 0.952·19-s + 0.692·21-s + 0.259·23-s − 0.984·25-s + 2.47·27-s + 1.45·29-s + 0.638·31-s + 0.839·33-s + 0.0466·35-s − 1.98·37-s + 2.56·39-s + 0.536·41-s − 0.542·43-s + 0.290·45-s − 0.0846·47-s + 0.142·49-s − 0.418·53-s + 0.0566·55-s + 1.74·57-s − 1.36·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8092\)    =    \(2^{2} \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(64.6149\)
Root analytic conductor: \(8.03834\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8092,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.575570220\)
\(L(\frac12)\) \(\approx\) \(5.575570220\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 \)
good3 \( 1 - 3.17T + 3T^{2} \)
5 \( 1 - 0.276T + 5T^{2} \)
11 \( 1 - 1.52T + 11T^{2} \)
13 \( 1 - 5.05T + 13T^{2} \)
19 \( 1 - 4.14T + 19T^{2} \)
23 \( 1 - 1.24T + 23T^{2} \)
29 \( 1 - 7.81T + 29T^{2} \)
31 \( 1 - 3.55T + 31T^{2} \)
37 \( 1 + 12.0T + 37T^{2} \)
41 \( 1 - 3.43T + 41T^{2} \)
43 \( 1 + 3.55T + 43T^{2} \)
47 \( 1 + 0.580T + 47T^{2} \)
53 \( 1 + 3.04T + 53T^{2} \)
59 \( 1 + 10.4T + 59T^{2} \)
61 \( 1 + 4.27T + 61T^{2} \)
67 \( 1 - 0.470T + 67T^{2} \)
71 \( 1 + 13.6T + 71T^{2} \)
73 \( 1 - 10.2T + 73T^{2} \)
79 \( 1 + 6.95T + 79T^{2} \)
83 \( 1 + 11.8T + 83T^{2} \)
89 \( 1 - 5.00T + 89T^{2} \)
97 \( 1 + 12.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.123210535142268233462474209308, −7.28427497681969537078720803169, −6.66507853590357177598123906041, −5.81915977302943571798671811423, −4.76586259625611521683578256013, −4.06723970234652194480522616521, −3.35939750539949306957636331300, −2.85403707811585648511746192569, −1.73861079795688961900140811198, −1.24379586853704035074385937339, 1.24379586853704035074385937339, 1.73861079795688961900140811198, 2.85403707811585648511746192569, 3.35939750539949306957636331300, 4.06723970234652194480522616521, 4.76586259625611521683578256013, 5.81915977302943571798671811423, 6.66507853590357177598123906041, 7.28427497681969537078720803169, 8.123210535142268233462474209308

Graph of the $Z$-function along the critical line