L(s) = 1 | − 3.17·3-s − 0.276·5-s − 7-s + 7.05·9-s − 1.52·11-s + 5.05·13-s + 0.875·15-s + 4.14·19-s + 3.17·21-s − 1.24·23-s − 4.92·25-s − 12.8·27-s − 7.81·29-s − 3.55·31-s + 4.82·33-s + 0.276·35-s + 12.0·37-s − 16.0·39-s − 3.43·41-s − 3.55·43-s − 1.94·45-s − 0.580·47-s + 49-s − 3.04·53-s + 0.419·55-s − 13.1·57-s − 10.4·59-s + ⋯ |
L(s) = 1 | − 1.83·3-s − 0.123·5-s − 0.377·7-s + 2.35·9-s − 0.458·11-s + 1.40·13-s + 0.226·15-s + 0.952·19-s + 0.692·21-s − 0.259·23-s − 0.984·25-s − 2.47·27-s − 1.45·29-s − 0.638·31-s + 0.839·33-s + 0.0466·35-s + 1.98·37-s − 2.56·39-s − 0.536·41-s − 0.542·43-s − 0.290·45-s − 0.0846·47-s + 0.142·49-s − 0.418·53-s + 0.0566·55-s − 1.74·57-s − 1.36·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + T \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + 3.17T + 3T^{2} \) |
| 5 | \( 1 + 0.276T + 5T^{2} \) |
| 11 | \( 1 + 1.52T + 11T^{2} \) |
| 13 | \( 1 - 5.05T + 13T^{2} \) |
| 19 | \( 1 - 4.14T + 19T^{2} \) |
| 23 | \( 1 + 1.24T + 23T^{2} \) |
| 29 | \( 1 + 7.81T + 29T^{2} \) |
| 31 | \( 1 + 3.55T + 31T^{2} \) |
| 37 | \( 1 - 12.0T + 37T^{2} \) |
| 41 | \( 1 + 3.43T + 41T^{2} \) |
| 43 | \( 1 + 3.55T + 43T^{2} \) |
| 47 | \( 1 + 0.580T + 47T^{2} \) |
| 53 | \( 1 + 3.04T + 53T^{2} \) |
| 59 | \( 1 + 10.4T + 59T^{2} \) |
| 61 | \( 1 - 4.27T + 61T^{2} \) |
| 67 | \( 1 - 0.470T + 67T^{2} \) |
| 71 | \( 1 - 13.6T + 71T^{2} \) |
| 73 | \( 1 + 10.2T + 73T^{2} \) |
| 79 | \( 1 - 6.95T + 79T^{2} \) |
| 83 | \( 1 + 11.8T + 83T^{2} \) |
| 89 | \( 1 - 5.00T + 89T^{2} \) |
| 97 | \( 1 - 12.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.46583774708828928873884429031, −6.50522036663800708341478486078, −6.02474025295968250007054190042, −5.57807538633513733927388058123, −4.85249941500513351128168251241, −3.99631330349966718447892897432, −3.37682888260547237591844432347, −1.90812917268116919833902144209, −0.985504200144651906296700567842, 0,
0.985504200144651906296700567842, 1.90812917268116919833902144209, 3.37682888260547237591844432347, 3.99631330349966718447892897432, 4.85249941500513351128168251241, 5.57807538633513733927388058123, 6.02474025295968250007054190042, 6.50522036663800708341478486078, 7.46583774708828928873884429031