Properties

Label 2-8092-1.1-c1-0-68
Degree $2$
Conductor $8092$
Sign $-1$
Analytic cond. $64.6149$
Root an. cond. $8.03834$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.17·3-s − 0.276·5-s − 7-s + 7.05·9-s − 1.52·11-s + 5.05·13-s + 0.875·15-s + 4.14·19-s + 3.17·21-s − 1.24·23-s − 4.92·25-s − 12.8·27-s − 7.81·29-s − 3.55·31-s + 4.82·33-s + 0.276·35-s + 12.0·37-s − 16.0·39-s − 3.43·41-s − 3.55·43-s − 1.94·45-s − 0.580·47-s + 49-s − 3.04·53-s + 0.419·55-s − 13.1·57-s − 10.4·59-s + ⋯
L(s)  = 1  − 1.83·3-s − 0.123·5-s − 0.377·7-s + 2.35·9-s − 0.458·11-s + 1.40·13-s + 0.226·15-s + 0.952·19-s + 0.692·21-s − 0.259·23-s − 0.984·25-s − 2.47·27-s − 1.45·29-s − 0.638·31-s + 0.839·33-s + 0.0466·35-s + 1.98·37-s − 2.56·39-s − 0.536·41-s − 0.542·43-s − 0.290·45-s − 0.0846·47-s + 0.142·49-s − 0.418·53-s + 0.0566·55-s − 1.74·57-s − 1.36·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8092\)    =    \(2^{2} \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(64.6149\)
Root analytic conductor: \(8.03834\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8092,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 \)
good3 \( 1 + 3.17T + 3T^{2} \)
5 \( 1 + 0.276T + 5T^{2} \)
11 \( 1 + 1.52T + 11T^{2} \)
13 \( 1 - 5.05T + 13T^{2} \)
19 \( 1 - 4.14T + 19T^{2} \)
23 \( 1 + 1.24T + 23T^{2} \)
29 \( 1 + 7.81T + 29T^{2} \)
31 \( 1 + 3.55T + 31T^{2} \)
37 \( 1 - 12.0T + 37T^{2} \)
41 \( 1 + 3.43T + 41T^{2} \)
43 \( 1 + 3.55T + 43T^{2} \)
47 \( 1 + 0.580T + 47T^{2} \)
53 \( 1 + 3.04T + 53T^{2} \)
59 \( 1 + 10.4T + 59T^{2} \)
61 \( 1 - 4.27T + 61T^{2} \)
67 \( 1 - 0.470T + 67T^{2} \)
71 \( 1 - 13.6T + 71T^{2} \)
73 \( 1 + 10.2T + 73T^{2} \)
79 \( 1 - 6.95T + 79T^{2} \)
83 \( 1 + 11.8T + 83T^{2} \)
89 \( 1 - 5.00T + 89T^{2} \)
97 \( 1 - 12.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.46583774708828928873884429031, −6.50522036663800708341478486078, −6.02474025295968250007054190042, −5.57807538633513733927388058123, −4.85249941500513351128168251241, −3.99631330349966718447892897432, −3.37682888260547237591844432347, −1.90812917268116919833902144209, −0.985504200144651906296700567842, 0, 0.985504200144651906296700567842, 1.90812917268116919833902144209, 3.37682888260547237591844432347, 3.99631330349966718447892897432, 4.85249941500513351128168251241, 5.57807538633513733927388058123, 6.02474025295968250007054190042, 6.50522036663800708341478486078, 7.46583774708828928873884429031

Graph of the $Z$-function along the critical line