Properties

Label 2-8001-1.1-c1-0-99
Degree $2$
Conductor $8001$
Sign $1$
Analytic cond. $63.8883$
Root an. cond. $7.99301$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.512·2-s − 1.73·4-s + 1.76·5-s − 7-s + 1.91·8-s − 0.906·10-s − 4.52·11-s + 4.50·13-s + 0.512·14-s + 2.49·16-s + 5.81·17-s + 6.77·19-s − 3.07·20-s + 2.31·22-s − 0.708·23-s − 1.86·25-s − 2.30·26-s + 1.73·28-s + 8.00·29-s + 8.44·31-s − 5.10·32-s − 2.97·34-s − 1.76·35-s + 1.40·37-s − 3.47·38-s + 3.38·40-s − 3.06·41-s + ⋯
L(s)  = 1  − 0.362·2-s − 0.868·4-s + 0.791·5-s − 0.377·7-s + 0.676·8-s − 0.286·10-s − 1.36·11-s + 1.24·13-s + 0.136·14-s + 0.623·16-s + 1.41·17-s + 1.55·19-s − 0.687·20-s + 0.493·22-s − 0.147·23-s − 0.373·25-s − 0.452·26-s + 0.328·28-s + 1.48·29-s + 1.51·31-s − 0.902·32-s − 0.511·34-s − 0.299·35-s + 0.231·37-s − 0.563·38-s + 0.535·40-s − 0.478·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8001 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8001\)    =    \(3^{2} \cdot 7 \cdot 127\)
Sign: $1$
Analytic conductor: \(63.8883\)
Root analytic conductor: \(7.99301\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8001,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.676219071\)
\(L(\frac12)\) \(\approx\) \(1.676219071\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + T \)
127 \( 1 - T \)
good2 \( 1 + 0.512T + 2T^{2} \)
5 \( 1 - 1.76T + 5T^{2} \)
11 \( 1 + 4.52T + 11T^{2} \)
13 \( 1 - 4.50T + 13T^{2} \)
17 \( 1 - 5.81T + 17T^{2} \)
19 \( 1 - 6.77T + 19T^{2} \)
23 \( 1 + 0.708T + 23T^{2} \)
29 \( 1 - 8.00T + 29T^{2} \)
31 \( 1 - 8.44T + 31T^{2} \)
37 \( 1 - 1.40T + 37T^{2} \)
41 \( 1 + 3.06T + 41T^{2} \)
43 \( 1 + 3.92T + 43T^{2} \)
47 \( 1 - 9.77T + 47T^{2} \)
53 \( 1 + 10.7T + 53T^{2} \)
59 \( 1 - 10.1T + 59T^{2} \)
61 \( 1 + 9.39T + 61T^{2} \)
67 \( 1 + 9.67T + 67T^{2} \)
71 \( 1 - 7.71T + 71T^{2} \)
73 \( 1 + 14.8T + 73T^{2} \)
79 \( 1 - 13.3T + 79T^{2} \)
83 \( 1 + 15.4T + 83T^{2} \)
89 \( 1 + 4.77T + 89T^{2} \)
97 \( 1 - 10.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.007964245674857411652258066107, −7.36323007162765493775170180161, −6.27880108810493744856751297485, −5.68362611559112802077704143951, −5.19336332338442930933542213256, −4.38206701964609466456371246719, −3.32589539774817441800380875589, −2.84381625798372055976785268267, −1.46869815383634874386207450886, −0.75313425124844941374057735141, 0.75313425124844941374057735141, 1.46869815383634874386207450886, 2.84381625798372055976785268267, 3.32589539774817441800380875589, 4.38206701964609466456371246719, 5.19336332338442930933542213256, 5.68362611559112802077704143951, 6.27880108810493744856751297485, 7.36323007162765493775170180161, 8.007964245674857411652258066107

Graph of the $Z$-function along the critical line