L(s) = 1 | − 0.684·2-s − 1.53·4-s − 0.182·5-s + 7-s + 2.41·8-s + 0.125·10-s + 4.23·11-s + 3.25·13-s − 0.684·14-s + 1.40·16-s − 2.73·17-s + 5.66·19-s + 0.279·20-s − 2.90·22-s + 3.08·23-s − 4.96·25-s − 2.23·26-s − 1.53·28-s − 6.70·29-s − 9.55·31-s − 5.79·32-s + 1.87·34-s − 0.182·35-s − 7.75·37-s − 3.87·38-s − 0.441·40-s + 0.852·41-s + ⋯ |
L(s) = 1 | − 0.484·2-s − 0.765·4-s − 0.0817·5-s + 0.377·7-s + 0.854·8-s + 0.0395·10-s + 1.27·11-s + 0.903·13-s − 0.183·14-s + 0.351·16-s − 0.662·17-s + 1.29·19-s + 0.0625·20-s − 0.618·22-s + 0.644·23-s − 0.993·25-s − 0.437·26-s − 0.289·28-s − 1.24·29-s − 1.71·31-s − 1.02·32-s + 0.320·34-s − 0.0308·35-s − 1.27·37-s − 0.629·38-s − 0.0698·40-s + 0.133·41-s + ⋯ |
Λ(s)=(=(8001s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8001s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−T |
| 127 | 1−T |
good | 2 | 1+0.684T+2T2 |
| 5 | 1+0.182T+5T2 |
| 11 | 1−4.23T+11T2 |
| 13 | 1−3.25T+13T2 |
| 17 | 1+2.73T+17T2 |
| 19 | 1−5.66T+19T2 |
| 23 | 1−3.08T+23T2 |
| 29 | 1+6.70T+29T2 |
| 31 | 1+9.55T+31T2 |
| 37 | 1+7.75T+37T2 |
| 41 | 1−0.852T+41T2 |
| 43 | 1+8.16T+43T2 |
| 47 | 1−5.27T+47T2 |
| 53 | 1+5.94T+53T2 |
| 59 | 1+7.70T+59T2 |
| 61 | 1+7.28T+61T2 |
| 67 | 1−8.52T+67T2 |
| 71 | 1+7.08T+71T2 |
| 73 | 1+1.43T+73T2 |
| 79 | 1−12.5T+79T2 |
| 83 | 1+11.1T+83T2 |
| 89 | 1+9.91T+89T2 |
| 97 | 1+7.39T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.48662591807826298409041873745, −7.06156288660670824723421336450, −6.04151203544071758275750826233, −5.39213888897358436575669060094, −4.64655193273663107155488801510, −3.76206704212331344230676883556, −3.46022422560407792131497504415, −1.79250217971826220711288533474, −1.29476534469473529557104978826, 0,
1.29476534469473529557104978826, 1.79250217971826220711288533474, 3.46022422560407792131497504415, 3.76206704212331344230676883556, 4.64655193273663107155488801510, 5.39213888897358436575669060094, 6.04151203544071758275750826233, 7.06156288660670824723421336450, 7.48662591807826298409041873745