L(s) = 1 | − 2.21·2-s + 2.92·4-s + 0.739·5-s + 7-s − 2.05·8-s − 1.64·10-s − 1.02·11-s + 1.47·13-s − 2.21·14-s − 1.28·16-s + 3.12·17-s − 5.88·19-s + 2.16·20-s + 2.26·22-s + 1.53·23-s − 4.45·25-s − 3.27·26-s + 2.92·28-s + 1.52·29-s + 1.14·31-s + 6.97·32-s − 6.93·34-s + 0.739·35-s − 11.1·37-s + 13.0·38-s − 1.52·40-s + 11.0·41-s + ⋯ |
L(s) = 1 | − 1.56·2-s + 1.46·4-s + 0.330·5-s + 0.377·7-s − 0.727·8-s − 0.518·10-s − 0.308·11-s + 0.409·13-s − 0.593·14-s − 0.321·16-s + 0.758·17-s − 1.34·19-s + 0.483·20-s + 0.483·22-s + 0.320·23-s − 0.890·25-s − 0.642·26-s + 0.553·28-s + 0.283·29-s + 0.205·31-s + 1.23·32-s − 1.19·34-s + 0.124·35-s − 1.82·37-s + 2.11·38-s − 0.240·40-s + 1.72·41-s + ⋯ |
Λ(s)=(=(8001s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8001s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−T |
| 127 | 1−T |
good | 2 | 1+2.21T+2T2 |
| 5 | 1−0.739T+5T2 |
| 11 | 1+1.02T+11T2 |
| 13 | 1−1.47T+13T2 |
| 17 | 1−3.12T+17T2 |
| 19 | 1+5.88T+19T2 |
| 23 | 1−1.53T+23T2 |
| 29 | 1−1.52T+29T2 |
| 31 | 1−1.14T+31T2 |
| 37 | 1+11.1T+37T2 |
| 41 | 1−11.0T+41T2 |
| 43 | 1−1.60T+43T2 |
| 47 | 1+8.29T+47T2 |
| 53 | 1−11.9T+53T2 |
| 59 | 1+3.45T+59T2 |
| 61 | 1−5.01T+61T2 |
| 67 | 1+8.41T+67T2 |
| 71 | 1+14.2T+71T2 |
| 73 | 1+1.36T+73T2 |
| 79 | 1−12.8T+79T2 |
| 83 | 1+7.52T+83T2 |
| 89 | 1−1.31T+89T2 |
| 97 | 1+8.68T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.66421846994623311128061860707, −7.07901913268441876967132812703, −6.28656976746025128306567106328, −5.64119304904860698505004579625, −4.69811122042059223325230090424, −3.83234304506555712855872281464, −2.69178046499684449809200014512, −1.92572808639951301453056912690, −1.16154690007489232643764181575, 0,
1.16154690007489232643764181575, 1.92572808639951301453056912690, 2.69178046499684449809200014512, 3.83234304506555712855872281464, 4.69811122042059223325230090424, 5.64119304904860698505004579625, 6.28656976746025128306567106328, 7.07901913268441876967132812703, 7.66421846994623311128061860707