L(s) = 1 | + 2.37·2-s + 3.65·4-s − 2.39·5-s + 7-s + 3.92·8-s − 5.68·10-s − 1.77·11-s − 3.89·13-s + 2.37·14-s + 2.03·16-s + 5.42·17-s + 2.10·19-s − 8.72·20-s − 4.22·22-s − 4.43·23-s + 0.713·25-s − 9.25·26-s + 3.65·28-s + 5.14·29-s − 3.27·31-s − 3.02·32-s + 12.8·34-s − 2.39·35-s − 6.54·37-s + 5.00·38-s − 9.38·40-s + 5.69·41-s + ⋯ |
L(s) = 1 | + 1.68·2-s + 1.82·4-s − 1.06·5-s + 0.377·7-s + 1.38·8-s − 1.79·10-s − 0.536·11-s − 1.07·13-s + 0.635·14-s + 0.507·16-s + 1.31·17-s + 0.483·19-s − 1.95·20-s − 0.901·22-s − 0.924·23-s + 0.142·25-s − 1.81·26-s + 0.690·28-s + 0.955·29-s − 0.587·31-s − 0.534·32-s + 2.21·34-s − 0.404·35-s − 1.07·37-s + 0.812·38-s − 1.48·40-s + 0.888·41-s + ⋯ |
Λ(s)=(=(8001s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8001s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−T |
| 127 | 1−T |
good | 2 | 1−2.37T+2T2 |
| 5 | 1+2.39T+5T2 |
| 11 | 1+1.77T+11T2 |
| 13 | 1+3.89T+13T2 |
| 17 | 1−5.42T+17T2 |
| 19 | 1−2.10T+19T2 |
| 23 | 1+4.43T+23T2 |
| 29 | 1−5.14T+29T2 |
| 31 | 1+3.27T+31T2 |
| 37 | 1+6.54T+37T2 |
| 41 | 1−5.69T+41T2 |
| 43 | 1+1.32T+43T2 |
| 47 | 1+1.09T+47T2 |
| 53 | 1+9.83T+53T2 |
| 59 | 1+5.41T+59T2 |
| 61 | 1−7.48T+61T2 |
| 67 | 1−9.52T+67T2 |
| 71 | 1+9.03T+71T2 |
| 73 | 1+15.3T+73T2 |
| 79 | 1+10.0T+79T2 |
| 83 | 1+13.7T+83T2 |
| 89 | 1+11.1T+89T2 |
| 97 | 1+15.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.44484196516352913026121320953, −6.75603824266903032722437347735, −5.72144580215065492584013618041, −5.34555430833845514831595042898, −4.56359301855515302550748463402, −4.06808181788419093542321504912, −3.23147485052135509123937839493, −2.71316038960204569578935121911, −1.60021999321748527847793507163, 0,
1.60021999321748527847793507163, 2.71316038960204569578935121911, 3.23147485052135509123937839493, 4.06808181788419093542321504912, 4.56359301855515302550748463402, 5.34555430833845514831595042898, 5.72144580215065492584013618041, 6.75603824266903032722437347735, 7.44484196516352913026121320953