L(s) = 1 | + 2.32·2-s + 3.41·4-s − 1.82·5-s + 7-s + 3.29·8-s − 4.25·10-s − 3.25·11-s + 0.459·13-s + 2.32·14-s + 0.837·16-s − 0.923·17-s + 1.76·19-s − 6.24·20-s − 7.56·22-s + 8.20·23-s − 1.65·25-s + 1.06·26-s + 3.41·28-s − 7.06·29-s − 8.26·31-s − 4.64·32-s − 2.14·34-s − 1.82·35-s + 2.64·37-s + 4.11·38-s − 6.02·40-s + 5.05·41-s + ⋯ |
L(s) = 1 | + 1.64·2-s + 1.70·4-s − 0.817·5-s + 0.377·7-s + 1.16·8-s − 1.34·10-s − 0.980·11-s + 0.127·13-s + 0.621·14-s + 0.209·16-s − 0.224·17-s + 0.405·19-s − 1.39·20-s − 1.61·22-s + 1.71·23-s − 0.331·25-s + 0.209·26-s + 0.645·28-s − 1.31·29-s − 1.48·31-s − 0.820·32-s − 0.368·34-s − 0.308·35-s + 0.434·37-s + 0.667·38-s − 0.952·40-s + 0.789·41-s + ⋯ |
Λ(s)=(=(8001s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8001s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−T |
| 127 | 1−T |
good | 2 | 1−2.32T+2T2 |
| 5 | 1+1.82T+5T2 |
| 11 | 1+3.25T+11T2 |
| 13 | 1−0.459T+13T2 |
| 17 | 1+0.923T+17T2 |
| 19 | 1−1.76T+19T2 |
| 23 | 1−8.20T+23T2 |
| 29 | 1+7.06T+29T2 |
| 31 | 1+8.26T+31T2 |
| 37 | 1−2.64T+37T2 |
| 41 | 1−5.05T+41T2 |
| 43 | 1+10.3T+43T2 |
| 47 | 1+6.87T+47T2 |
| 53 | 1+1.18T+53T2 |
| 59 | 1−4.54T+59T2 |
| 61 | 1+5.89T+61T2 |
| 67 | 1+6.38T+67T2 |
| 71 | 1−4.59T+71T2 |
| 73 | 1+5.10T+73T2 |
| 79 | 1+16.1T+79T2 |
| 83 | 1−10.0T+83T2 |
| 89 | 1−16.1T+89T2 |
| 97 | 1−17.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.44398639023798588597709385304, −6.70584753459119788270623523211, −5.82144968037393852783245727086, −5.18383093939771593704737466363, −4.77880052377653251748763155466, −3.88796479722430237444593926890, −3.36047204876154956876727289123, −2.61367147941893038254507664909, −1.62708737491148037225179388638, 0,
1.62708737491148037225179388638, 2.61367147941893038254507664909, 3.36047204876154956876727289123, 3.88796479722430237444593926890, 4.77880052377653251748763155466, 5.18383093939771593704737466363, 5.82144968037393852783245727086, 6.70584753459119788270623523211, 7.44398639023798588597709385304