L(s) = 1 | + 1.94·2-s + 1.78·4-s + 1.34·5-s + 7-s − 0.426·8-s + 2.61·10-s − 0.671·11-s − 2.12·13-s + 1.94·14-s − 4.39·16-s + 1.91·17-s − 4.48·19-s + 2.39·20-s − 1.30·22-s − 4.40·23-s − 3.19·25-s − 4.12·26-s + 1.78·28-s − 2.36·29-s + 1.43·31-s − 7.68·32-s + 3.71·34-s + 1.34·35-s + 5.60·37-s − 8.71·38-s − 0.572·40-s − 4.45·41-s + ⋯ |
L(s) = 1 | + 1.37·2-s + 0.890·4-s + 0.600·5-s + 0.377·7-s − 0.150·8-s + 0.825·10-s − 0.202·11-s − 0.589·13-s + 0.519·14-s − 1.09·16-s + 0.463·17-s − 1.02·19-s + 0.534·20-s − 0.278·22-s − 0.918·23-s − 0.639·25-s − 0.809·26-s + 0.336·28-s − 0.438·29-s + 0.258·31-s − 1.35·32-s + 0.637·34-s + 0.226·35-s + 0.921·37-s − 1.41·38-s − 0.0905·40-s − 0.696·41-s + ⋯ |
Λ(s)=(=(8001s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8001s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−T |
| 127 | 1−T |
good | 2 | 1−1.94T+2T2 |
| 5 | 1−1.34T+5T2 |
| 11 | 1+0.671T+11T2 |
| 13 | 1+2.12T+13T2 |
| 17 | 1−1.91T+17T2 |
| 19 | 1+4.48T+19T2 |
| 23 | 1+4.40T+23T2 |
| 29 | 1+2.36T+29T2 |
| 31 | 1−1.43T+31T2 |
| 37 | 1−5.60T+37T2 |
| 41 | 1+4.45T+41T2 |
| 43 | 1+8.18T+43T2 |
| 47 | 1+13.1T+47T2 |
| 53 | 1−11.7T+53T2 |
| 59 | 1+7.06T+59T2 |
| 61 | 1−3.58T+61T2 |
| 67 | 1−1.70T+67T2 |
| 71 | 1+5.36T+71T2 |
| 73 | 1+0.516T+73T2 |
| 79 | 1+6.93T+79T2 |
| 83 | 1+8.45T+83T2 |
| 89 | 1−13.3T+89T2 |
| 97 | 1+12.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.29127202262738777774028677924, −6.47862223307226735798124731683, −5.95446596988286599591077732891, −5.32781857748533181947599331294, −4.69335832422527238468426988348, −4.05198500879192561854055878491, −3.24337216986353082071501796890, −2.36593879062252331537288857720, −1.73371554948533187685025065582, 0,
1.73371554948533187685025065582, 2.36593879062252331537288857720, 3.24337216986353082071501796890, 4.05198500879192561854055878491, 4.69335832422527238468426988348, 5.32781857748533181947599331294, 5.95446596988286599591077732891, 6.47862223307226735798124731683, 7.29127202262738777774028677924