L(s) = 1 | + 0.384·2-s − 1.85·4-s − 3.33·5-s + 7-s − 1.48·8-s − 1.28·10-s − 0.515·11-s + 0.383·13-s + 0.384·14-s + 3.13·16-s − 5.06·17-s − 3.66·19-s + 6.17·20-s − 0.198·22-s + 5.75·23-s + 6.12·25-s + 0.147·26-s − 1.85·28-s + 5.53·29-s − 1.26·31-s + 4.16·32-s − 1.94·34-s − 3.33·35-s − 1.25·37-s − 1.40·38-s + 4.94·40-s + 3.87·41-s + ⋯ |
L(s) = 1 | + 0.271·2-s − 0.926·4-s − 1.49·5-s + 0.377·7-s − 0.523·8-s − 0.405·10-s − 0.155·11-s + 0.106·13-s + 0.102·14-s + 0.783·16-s − 1.22·17-s − 0.840·19-s + 1.38·20-s − 0.0422·22-s + 1.20·23-s + 1.22·25-s + 0.0289·26-s − 0.350·28-s + 1.02·29-s − 0.226·31-s + 0.736·32-s − 0.334·34-s − 0.563·35-s − 0.206·37-s − 0.228·38-s + 0.781·40-s + 0.604·41-s + ⋯ |
Λ(s)=(=(8001s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8001s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−T |
| 127 | 1−T |
good | 2 | 1−0.384T+2T2 |
| 5 | 1+3.33T+5T2 |
| 11 | 1+0.515T+11T2 |
| 13 | 1−0.383T+13T2 |
| 17 | 1+5.06T+17T2 |
| 19 | 1+3.66T+19T2 |
| 23 | 1−5.75T+23T2 |
| 29 | 1−5.53T+29T2 |
| 31 | 1+1.26T+31T2 |
| 37 | 1+1.25T+37T2 |
| 41 | 1−3.87T+41T2 |
| 43 | 1+10.3T+43T2 |
| 47 | 1−11.4T+47T2 |
| 53 | 1−7.61T+53T2 |
| 59 | 1−10.0T+59T2 |
| 61 | 1−4.93T+61T2 |
| 67 | 1+7.85T+67T2 |
| 71 | 1+10.4T+71T2 |
| 73 | 1+7.05T+73T2 |
| 79 | 1+1.78T+79T2 |
| 83 | 1−1.60T+83T2 |
| 89 | 1−8.42T+89T2 |
| 97 | 1−11.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.48279839561981237300453560464, −6.95424763577452655882127649063, −6.06277620047204426953445886997, −5.09318476742149573784318798431, −4.54732534462271393861898267534, −4.07287024810035394625973823723, −3.35348004320702806606024943521, −2.42151694585635320629548487798, −0.943510042622814131818536097598, 0,
0.943510042622814131818536097598, 2.42151694585635320629548487798, 3.35348004320702806606024943521, 4.07287024810035394625973823723, 4.54732534462271393861898267534, 5.09318476742149573784318798431, 6.06277620047204426953445886997, 6.95424763577452655882127649063, 7.48279839561981237300453560464