L(s) = 1 | − 0.446·2-s − 1.80·4-s + 2.33·5-s + 7-s + 1.69·8-s − 1.04·10-s − 4.53·11-s − 0.767·13-s − 0.446·14-s + 2.84·16-s − 3.43·17-s − 4.98·19-s − 4.20·20-s + 2.02·22-s + 4.14·23-s + 0.464·25-s + 0.342·26-s − 1.80·28-s + 9.37·29-s + 5.36·31-s − 4.66·32-s + 1.53·34-s + 2.33·35-s − 2.44·37-s + 2.22·38-s + 3.96·40-s + 1.04·41-s + ⋯ |
L(s) = 1 | − 0.315·2-s − 0.900·4-s + 1.04·5-s + 0.377·7-s + 0.599·8-s − 0.329·10-s − 1.36·11-s − 0.212·13-s − 0.119·14-s + 0.711·16-s − 0.832·17-s − 1.14·19-s − 0.941·20-s + 0.431·22-s + 0.864·23-s + 0.0929·25-s + 0.0671·26-s − 0.340·28-s + 1.74·29-s + 0.964·31-s − 0.824·32-s + 0.262·34-s + 0.395·35-s − 0.402·37-s + 0.361·38-s + 0.627·40-s + 0.163·41-s + ⋯ |
Λ(s)=(=(8001s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8001s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−T |
| 127 | 1−T |
good | 2 | 1+0.446T+2T2 |
| 5 | 1−2.33T+5T2 |
| 11 | 1+4.53T+11T2 |
| 13 | 1+0.767T+13T2 |
| 17 | 1+3.43T+17T2 |
| 19 | 1+4.98T+19T2 |
| 23 | 1−4.14T+23T2 |
| 29 | 1−9.37T+29T2 |
| 31 | 1−5.36T+31T2 |
| 37 | 1+2.44T+37T2 |
| 41 | 1−1.04T+41T2 |
| 43 | 1−2.90T+43T2 |
| 47 | 1−1.19T+47T2 |
| 53 | 1+10.5T+53T2 |
| 59 | 1+1.68T+59T2 |
| 61 | 1−4.42T+61T2 |
| 67 | 1−11.8T+67T2 |
| 71 | 1+5.39T+71T2 |
| 73 | 1−5.28T+73T2 |
| 79 | 1+5.18T+79T2 |
| 83 | 1+6.33T+83T2 |
| 89 | 1−1.35T+89T2 |
| 97 | 1+8.94T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.68040346805330134450282221335, −6.74692088109717100893133845563, −6.09646288993958756066335749990, −5.19938423816290574469223720996, −4.84086135079742606336177749368, −4.13172646152765065805132861528, −2.83853220459818778705997419510, −2.25235849150977401716595798371, −1.18771676966119885437651168629, 0,
1.18771676966119885437651168629, 2.25235849150977401716595798371, 2.83853220459818778705997419510, 4.13172646152765065805132861528, 4.84086135079742606336177749368, 5.19938423816290574469223720996, 6.09646288993958756066335749990, 6.74692088109717100893133845563, 7.68040346805330134450282221335