Properties

Label 2-8001-1.1-c1-0-230
Degree $2$
Conductor $8001$
Sign $-1$
Analytic cond. $63.8883$
Root an. cond. $7.99301$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.639·2-s − 1.59·4-s + 2.86·5-s − 7-s + 2.29·8-s − 1.83·10-s + 2.14·11-s − 4.28·13-s + 0.639·14-s + 1.71·16-s + 2.78·17-s − 4.83·19-s − 4.55·20-s − 1.37·22-s + 0.469·23-s + 3.20·25-s + 2.74·26-s + 1.59·28-s + 5.86·29-s − 8.47·31-s − 5.68·32-s − 1.78·34-s − 2.86·35-s − 3.06·37-s + 3.09·38-s + 6.57·40-s + 11.3·41-s + ⋯
L(s)  = 1  − 0.452·2-s − 0.795·4-s + 1.28·5-s − 0.377·7-s + 0.812·8-s − 0.579·10-s + 0.646·11-s − 1.18·13-s + 0.170·14-s + 0.427·16-s + 0.675·17-s − 1.10·19-s − 1.01·20-s − 0.292·22-s + 0.0978·23-s + 0.640·25-s + 0.537·26-s + 0.300·28-s + 1.08·29-s − 1.52·31-s − 1.00·32-s − 0.305·34-s − 0.484·35-s − 0.503·37-s + 0.501·38-s + 1.04·40-s + 1.76·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8001 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8001\)    =    \(3^{2} \cdot 7 \cdot 127\)
Sign: $-1$
Analytic conductor: \(63.8883\)
Root analytic conductor: \(7.99301\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8001,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + T \)
127 \( 1 - T \)
good2 \( 1 + 0.639T + 2T^{2} \)
5 \( 1 - 2.86T + 5T^{2} \)
11 \( 1 - 2.14T + 11T^{2} \)
13 \( 1 + 4.28T + 13T^{2} \)
17 \( 1 - 2.78T + 17T^{2} \)
19 \( 1 + 4.83T + 19T^{2} \)
23 \( 1 - 0.469T + 23T^{2} \)
29 \( 1 - 5.86T + 29T^{2} \)
31 \( 1 + 8.47T + 31T^{2} \)
37 \( 1 + 3.06T + 37T^{2} \)
41 \( 1 - 11.3T + 41T^{2} \)
43 \( 1 + 2.70T + 43T^{2} \)
47 \( 1 - 4.49T + 47T^{2} \)
53 \( 1 + 6.46T + 53T^{2} \)
59 \( 1 + 12.4T + 59T^{2} \)
61 \( 1 - 6.90T + 61T^{2} \)
67 \( 1 - 8.97T + 67T^{2} \)
71 \( 1 + 7.06T + 71T^{2} \)
73 \( 1 + 0.223T + 73T^{2} \)
79 \( 1 + 10.7T + 79T^{2} \)
83 \( 1 + 10.6T + 83T^{2} \)
89 \( 1 + 12.7T + 89T^{2} \)
97 \( 1 + 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47338511280643963958061836767, −6.87305167653595673987491276237, −5.99839233534649226110630432618, −5.50635158913485345429501036868, −4.68273518881666770640083677243, −4.03543587896545814719803340301, −2.97381943612901212999184823908, −2.07165162705821014007132020350, −1.24281503990345091351649064209, 0, 1.24281503990345091351649064209, 2.07165162705821014007132020350, 2.97381943612901212999184823908, 4.03543587896545814719803340301, 4.68273518881666770640083677243, 5.50635158913485345429501036868, 5.99839233534649226110630432618, 6.87305167653595673987491276237, 7.47338511280643963958061836767

Graph of the $Z$-function along the critical line