Properties

Label 4-800e2-1.1-c5e2-0-5
Degree $4$
Conductor $640000$
Sign $1$
Analytic cond. $16462.7$
Root an. cond. $11.3272$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 422·9-s + 1.07e3·11-s + 2.22e3·19-s − 5.83e3·29-s + 5.24e3·31-s + 340·41-s − 9.65e3·49-s + 8.29e4·59-s + 3.09e4·61-s − 5.71e4·71-s − 1.38e5·79-s + 1.19e5·81-s + 2.53e5·89-s + 4.52e5·99-s + 1.28e4·101-s − 4.97e3·109-s + 5.39e5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2.60e5·169-s + ⋯
L(s)  = 1  + 1.73·9-s + 2.67·11-s + 1.41·19-s − 1.28·29-s + 0.980·31-s + 0.0315·41-s − 0.574·49-s + 3.10·59-s + 1.06·61-s − 1.34·71-s − 2.49·79-s + 2.01·81-s + 3.39·89-s + 4.63·99-s + 0.125·101-s − 0.0400·109-s + 3.35·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s + 0.702·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 640000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640000 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(640000\)    =    \(2^{10} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(16462.7\)
Root analytic conductor: \(11.3272\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 640000,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(7.949232791\)
\(L(\frac12)\) \(\approx\) \(7.949232791\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( 1 - 422 T^{2} + p^{10} T^{4} \)
7$C_2^2$ \( 1 + 9650 T^{2} + p^{10} T^{4} \)
11$C_2$ \( ( 1 - 536 T + p^{5} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 260950 T^{2} + p^{10} T^{4} \)
17$C_2^2$ \( 1 - 1206430 T^{2} + p^{10} T^{4} \)
19$C_2$ \( ( 1 - 1112 T + p^{5} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 2530030 T^{2} + p^{10} T^{4} \)
29$C_2$ \( ( 1 + 2918 T + p^{5} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 2624 T + p^{5} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 49234150 T^{2} + p^{10} T^{4} \)
41$C_2$ \( ( 1 - 170 T + p^{5} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 103108298 T^{2} + p^{10} T^{4} \)
47$C_2^2$ \( 1 - 458688990 T^{2} + p^{10} T^{4} \)
53$C_2^2$ \( 1 - 344527302 T^{2} + p^{10} T^{4} \)
59$C_2$ \( ( 1 - 41480 T + p^{5} T^{2} )^{2} \)
61$C_2$ \( ( 1 - 15462 T + p^{5} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 2269936678 T^{2} + p^{10} T^{4} \)
71$C_2$ \( ( 1 + 28592 T + p^{5} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 1265674286 T^{2} + p^{10} T^{4} \)
79$C_2$ \( ( 1 + 69152 T + p^{5} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 6449241286 T^{2} + p^{10} T^{4} \)
89$C_2$ \( ( 1 - 126806 T + p^{5} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 13294636414 T^{2} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.768358916214408601910225410688, −9.340824335920448743518866328526, −8.873201340201468672576508167204, −8.736704950128098198739088242230, −7.79984068717065662182975384321, −7.61120162069170279367033129017, −6.96691888251164231504645833507, −6.81954108633793409855173744391, −6.42990435346206177238637998572, −5.81714848316671794806421781432, −5.30280178646016097095698086359, −4.70968019075414304228255501888, −4.15674443373212159223554124100, −3.89632223517782213448149176344, −3.53144618881840690568479977725, −2.80140835190084112013487313543, −1.77481056147175849265754772774, −1.67900312097751265361853060909, −0.917659211573727876752183211192, −0.73216932103521270983262236313, 0.73216932103521270983262236313, 0.917659211573727876752183211192, 1.67900312097751265361853060909, 1.77481056147175849265754772774, 2.80140835190084112013487313543, 3.53144618881840690568479977725, 3.89632223517782213448149176344, 4.15674443373212159223554124100, 4.70968019075414304228255501888, 5.30280178646016097095698086359, 5.81714848316671794806421781432, 6.42990435346206177238637998572, 6.81954108633793409855173744391, 6.96691888251164231504645833507, 7.61120162069170279367033129017, 7.79984068717065662182975384321, 8.736704950128098198739088242230, 8.873201340201468672576508167204, 9.340824335920448743518866328526, 9.768358916214408601910225410688

Graph of the $Z$-function along the critical line