Properties

Label 2-800-1.1-c5-0-92
Degree $2$
Conductor $800$
Sign $-1$
Analytic cond. $128.307$
Root an. cond. $11.3272$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 19.8·3-s + 160.·7-s + 149.·9-s − 404.·11-s − 249.·13-s − 1.25e3·17-s − 905.·19-s + 3.18e3·21-s + 2.15e3·23-s − 1.85e3·27-s − 2.79e3·29-s + 3.31e3·31-s − 8.00e3·33-s − 1.31e4·37-s − 4.94e3·39-s − 5.07e3·41-s − 1.18e4·43-s − 1.61e3·47-s + 9.09e3·49-s − 2.47e4·51-s − 3.35e4·53-s − 1.79e4·57-s + 2.21e4·59-s − 4.32e4·61-s + 2.39e4·63-s + 4.40e4·67-s + 4.25e4·69-s + ⋯
L(s)  = 1  + 1.27·3-s + 1.24·7-s + 0.613·9-s − 1.00·11-s − 0.409·13-s − 1.05·17-s − 0.575·19-s + 1.57·21-s + 0.847·23-s − 0.490·27-s − 0.616·29-s + 0.619·31-s − 1.27·33-s − 1.58·37-s − 0.520·39-s − 0.471·41-s − 0.976·43-s − 0.106·47-s + 0.541·49-s − 1.33·51-s − 1.64·53-s − 0.731·57-s + 0.828·59-s − 1.48·61-s + 0.761·63-s + 1.19·67-s + 1.07·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(128.307\)
Root analytic conductor: \(11.3272\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 800,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 19.8T + 243T^{2} \)
7 \( 1 - 160.T + 1.68e4T^{2} \)
11 \( 1 + 404.T + 1.61e5T^{2} \)
13 \( 1 + 249.T + 3.71e5T^{2} \)
17 \( 1 + 1.25e3T + 1.41e6T^{2} \)
19 \( 1 + 905.T + 2.47e6T^{2} \)
23 \( 1 - 2.15e3T + 6.43e6T^{2} \)
29 \( 1 + 2.79e3T + 2.05e7T^{2} \)
31 \( 1 - 3.31e3T + 2.86e7T^{2} \)
37 \( 1 + 1.31e4T + 6.93e7T^{2} \)
41 \( 1 + 5.07e3T + 1.15e8T^{2} \)
43 \( 1 + 1.18e4T + 1.47e8T^{2} \)
47 \( 1 + 1.61e3T + 2.29e8T^{2} \)
53 \( 1 + 3.35e4T + 4.18e8T^{2} \)
59 \( 1 - 2.21e4T + 7.14e8T^{2} \)
61 \( 1 + 4.32e4T + 8.44e8T^{2} \)
67 \( 1 - 4.40e4T + 1.35e9T^{2} \)
71 \( 1 - 3.81e4T + 1.80e9T^{2} \)
73 \( 1 - 3.72e4T + 2.07e9T^{2} \)
79 \( 1 + 1.08e4T + 3.07e9T^{2} \)
83 \( 1 + 7.57e4T + 3.93e9T^{2} \)
89 \( 1 - 1.21e5T + 5.58e9T^{2} \)
97 \( 1 + 1.57e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.824358729273971593204415470553, −8.307791316976726273780183200971, −7.66845197490403660130363228789, −6.72687245059835227268533591810, −5.24905896427456969467728693620, −4.60052651197799418602174093946, −3.38419693014268968981035546602, −2.38681217805345838277867776726, −1.70058956699222226167089484582, 0, 1.70058956699222226167089484582, 2.38681217805345838277867776726, 3.38419693014268968981035546602, 4.60052651197799418602174093946, 5.24905896427456969467728693620, 6.72687245059835227268533591810, 7.66845197490403660130363228789, 8.307791316976726273780183200971, 8.824358729273971593204415470553

Graph of the $Z$-function along the critical line