L(s) = 1 | + (−0.642 − 0.766i)2-s + (−0.173 − 0.984i)3-s + (−0.173 + 0.984i)4-s + (3.04 − 0.537i)5-s + (−0.642 + 0.766i)6-s + (−2.64 − 0.169i)7-s + (0.866 − 0.500i)8-s + (−0.939 + 0.342i)9-s + (−2.36 − 1.98i)10-s + 4.55·11-s + 12-s + (2.20 + 1.84i)13-s + (1.56 + 2.13i)14-s + (−1.05 − 2.90i)15-s + (−0.939 − 0.342i)16-s + (0.0766 − 0.210i)17-s + ⋯ |
L(s) = 1 | + (−0.454 − 0.541i)2-s + (−0.100 − 0.568i)3-s + (−0.0868 + 0.492i)4-s + (1.36 − 0.240i)5-s + (−0.262 + 0.312i)6-s + (−0.997 − 0.0642i)7-s + (0.306 − 0.176i)8-s + (−0.313 + 0.114i)9-s + (−0.749 − 0.628i)10-s + 1.37·11-s + 0.288·12-s + (0.610 + 0.512i)13-s + (0.418 + 0.569i)14-s + (−0.273 − 0.750i)15-s + (−0.234 − 0.0855i)16-s + (0.0185 − 0.0510i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0758 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0758 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06318 - 0.985408i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06318 - 0.985408i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.642 + 0.766i)T \) |
| 3 | \( 1 + (0.173 + 0.984i)T \) |
| 7 | \( 1 + (2.64 + 0.169i)T \) |
| 19 | \( 1 + (-1.53 + 4.08i)T \) |
good | 5 | \( 1 + (-3.04 + 0.537i)T + (4.69 - 1.71i)T^{2} \) |
| 11 | \( 1 - 4.55T + 11T^{2} \) |
| 13 | \( 1 + (-2.20 - 1.84i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (-0.0766 + 0.210i)T + (-13.0 - 10.9i)T^{2} \) |
| 23 | \( 1 + (1.84 + 1.55i)T + (3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (-4.41 - 0.778i)T + (27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (-0.0496 - 0.0859i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-6.04 + 3.49i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.92 + 3.29i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (2.06 + 0.751i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-1.62 - 4.46i)T + (-36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 + (8.20 + 1.44i)T + (49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (11.5 + 4.21i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (3.87 - 4.61i)T + (-10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (-4.53 + 5.40i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (0.460 - 1.26i)T + (-54.3 - 45.6i)T^{2} \) |
| 73 | \( 1 + (2.13 - 0.376i)T + (68.5 - 24.9i)T^{2} \) |
| 79 | \( 1 + (-5.47 + 15.0i)T + (-60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (13.9 + 8.07i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.93 + 10.9i)T + (-83.6 - 30.4i)T^{2} \) |
| 97 | \( 1 + (-1.27 - 7.21i)T + (-91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.889695756282428908180815237636, −9.209247391957258034094694671131, −8.855956387431403369317431224580, −7.41142072095759165517281491018, −6.37491573110444113153975577465, −6.10716851208893954505645465072, −4.54780505241170134440283852596, −3.24296714831159984172181526345, −2.08918249915286350105640631425, −1.00837753606408129708530984847,
1.37597805022648275913651424081, 2.96829732022683900697956034562, 4.12061106830692035938977614704, 5.56204091220206369704203077181, 6.17327565535303567088743759786, 6.64572700481639432755988442484, 8.038046953251300165037829699726, 9.064171535742409958020182720127, 9.686582017536904217426530544958, 10.04202762310274777435384744407