Properties

Label 2-798-399.53-c1-0-21
Degree $2$
Conductor $798$
Sign $0.948 - 0.316i$
Analytic cond. $6.37206$
Root an. cond. $2.52429$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.173 + 0.984i)2-s + (−1.60 − 0.651i)3-s + (−0.939 + 0.342i)4-s + (−0.122 + 0.336i)5-s + (0.362 − 1.69i)6-s + (−2.54 + 0.714i)7-s + (−0.5 − 0.866i)8-s + (2.15 + 2.09i)9-s + (−0.352 − 0.0621i)10-s − 4.13i·11-s + (1.73 + 0.0629i)12-s + (0.464 + 0.0819i)13-s + (−1.14 − 2.38i)14-s + (0.415 − 0.460i)15-s + (0.766 − 0.642i)16-s + (−1.75 − 2.08i)17-s + ⋯
L(s)  = 1  + (0.122 + 0.696i)2-s + (−0.926 − 0.375i)3-s + (−0.469 + 0.171i)4-s + (−0.0547 + 0.150i)5-s + (0.148 − 0.691i)6-s + (−0.962 + 0.270i)7-s + (−0.176 − 0.306i)8-s + (0.717 + 0.696i)9-s + (−0.111 − 0.0196i)10-s − 1.24i·11-s + (0.499 + 0.0181i)12-s + (0.128 + 0.0227i)13-s + (−0.306 − 0.637i)14-s + (0.107 − 0.118i)15-s + (0.191 − 0.160i)16-s + (−0.425 − 0.506i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.948 - 0.316i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.948 - 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(798\)    =    \(2 \cdot 3 \cdot 7 \cdot 19\)
Sign: $0.948 - 0.316i$
Analytic conductor: \(6.37206\)
Root analytic conductor: \(2.52429\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{798} (53, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 798,\ (\ :1/2),\ 0.948 - 0.316i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.930683 + 0.151416i\)
\(L(\frac12)\) \(\approx\) \(0.930683 + 0.151416i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.173 - 0.984i)T \)
3 \( 1 + (1.60 + 0.651i)T \)
7 \( 1 + (2.54 - 0.714i)T \)
19 \( 1 + (-3.58 - 2.47i)T \)
good5 \( 1 + (0.122 - 0.336i)T + (-3.83 - 3.21i)T^{2} \)
11 \( 1 + 4.13iT - 11T^{2} \)
13 \( 1 + (-0.464 - 0.0819i)T + (12.2 + 4.44i)T^{2} \)
17 \( 1 + (1.75 + 2.08i)T + (-2.95 + 16.7i)T^{2} \)
23 \( 1 + (-1.60 - 0.282i)T + (21.6 + 7.86i)T^{2} \)
29 \( 1 + (0.141 - 0.0513i)T + (22.2 - 18.6i)T^{2} \)
31 \( 1 + (0.771 - 0.445i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (-8.04 + 4.64i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-1.78 - 10.1i)T + (-38.5 + 14.0i)T^{2} \)
43 \( 1 + (-3.95 + 3.32i)T + (7.46 - 42.3i)T^{2} \)
47 \( 1 + (-7.29 + 8.68i)T + (-8.16 - 46.2i)T^{2} \)
53 \( 1 + (-11.6 + 4.22i)T + (40.6 - 34.0i)T^{2} \)
59 \( 1 + (-3.59 + 3.01i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (1.59 - 9.03i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-1.59 - 0.282i)T + (62.9 + 22.9i)T^{2} \)
71 \( 1 + (2.88 - 2.41i)T + (12.3 - 69.9i)T^{2} \)
73 \( 1 + (0.136 + 0.0498i)T + (55.9 + 46.9i)T^{2} \)
79 \( 1 + (2.38 + 2.84i)T + (-13.7 + 77.7i)T^{2} \)
83 \( 1 + (3.58 + 2.06i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (8.53 - 3.10i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (-5.26 + 14.4i)T + (-74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33234461660052854459593165796, −9.392929330024180105819258998362, −8.544694749670516214241467439179, −7.41349048450967983419918295635, −6.78896672433229880843688198162, −5.85604905383972588668248008318, −5.43215706572383266263613998799, −4.04818074827574814715659437780, −2.87407823978132477166264777256, −0.74402355667850430969336918424, 0.911688878679692301477919178924, 2.63919998768605086008446439576, 3.97688257917852080194079290296, 4.61743087679068817903706123394, 5.68674530529129965824687872109, 6.64614393733841104761848961448, 7.44564803882318205957495356331, 9.001756511320275893377982276311, 9.591023180659949782778035379518, 10.33859028162358185484562850909

Graph of the $Z$-function along the critical line