Properties

Label 2-798-399.53-c1-0-13
Degree $2$
Conductor $798$
Sign $-0.870 + 0.492i$
Analytic cond. $6.37206$
Root an. cond. $2.52429$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.173 + 0.984i)2-s + (0.600 + 1.62i)3-s + (−0.939 + 0.342i)4-s + (−1.35 + 3.71i)5-s + (−1.49 + 0.873i)6-s + (0.939 + 2.47i)7-s + (−0.5 − 0.866i)8-s + (−2.27 + 1.95i)9-s + (−3.88 − 0.685i)10-s − 2.71i·11-s + (−1.12 − 1.32i)12-s + (3.46 + 0.610i)13-s + (−2.27 + 1.35i)14-s + (−6.84 + 0.0351i)15-s + (0.766 − 0.642i)16-s + (0.0364 + 0.0434i)17-s + ⋯
L(s)  = 1  + (0.122 + 0.696i)2-s + (0.346 + 0.937i)3-s + (−0.469 + 0.171i)4-s + (−0.604 + 1.65i)5-s + (−0.610 + 0.356i)6-s + (0.355 + 0.934i)7-s + (−0.176 − 0.306i)8-s + (−0.759 + 0.650i)9-s + (−1.22 − 0.216i)10-s − 0.818i·11-s + (−0.323 − 0.381i)12-s + (0.960 + 0.169i)13-s + (−0.607 + 0.362i)14-s + (−1.76 + 0.00907i)15-s + (0.191 − 0.160i)16-s + (0.00884 + 0.0105i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.870 + 0.492i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.870 + 0.492i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(798\)    =    \(2 \cdot 3 \cdot 7 \cdot 19\)
Sign: $-0.870 + 0.492i$
Analytic conductor: \(6.37206\)
Root analytic conductor: \(2.52429\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{798} (53, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 798,\ (\ :1/2),\ -0.870 + 0.492i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.392735 - 1.49226i\)
\(L(\frac12)\) \(\approx\) \(0.392735 - 1.49226i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.173 - 0.984i)T \)
3 \( 1 + (-0.600 - 1.62i)T \)
7 \( 1 + (-0.939 - 2.47i)T \)
19 \( 1 + (-1.41 - 4.12i)T \)
good5 \( 1 + (1.35 - 3.71i)T + (-3.83 - 3.21i)T^{2} \)
11 \( 1 + 2.71iT - 11T^{2} \)
13 \( 1 + (-3.46 - 0.610i)T + (12.2 + 4.44i)T^{2} \)
17 \( 1 + (-0.0364 - 0.0434i)T + (-2.95 + 16.7i)T^{2} \)
23 \( 1 + (-2.76 - 0.487i)T + (21.6 + 7.86i)T^{2} \)
29 \( 1 + (0.757 - 0.275i)T + (22.2 - 18.6i)T^{2} \)
31 \( 1 + (-8.15 + 4.70i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (-5.82 + 3.36i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (0.280 + 1.59i)T + (-38.5 + 14.0i)T^{2} \)
43 \( 1 + (-6.84 + 5.74i)T + (7.46 - 42.3i)T^{2} \)
47 \( 1 + (-2.85 + 3.39i)T + (-8.16 - 46.2i)T^{2} \)
53 \( 1 + (8.67 - 3.15i)T + (40.6 - 34.0i)T^{2} \)
59 \( 1 + (5.03 - 4.22i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (0.0164 - 0.0934i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (11.8 + 2.08i)T + (62.9 + 22.9i)T^{2} \)
71 \( 1 + (9.86 - 8.27i)T + (12.3 - 69.9i)T^{2} \)
73 \( 1 + (-8.25 - 3.00i)T + (55.9 + 46.9i)T^{2} \)
79 \( 1 + (0.766 + 0.913i)T + (-13.7 + 77.7i)T^{2} \)
83 \( 1 + (-7.35 - 4.24i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (5.32 - 1.93i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (3.03 - 8.34i)T + (-74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.85722199323111149896715962647, −9.883057607940081562703082948202, −8.904426788241451614969861346586, −8.181107233140982294586702786000, −7.47359894412252973183161393589, −6.15862621275978406988015971522, −5.75934160222991590025277941329, −4.30930441697688381898400220928, −3.45007369964738209143054928679, −2.65411847540649230402113452434, 0.800704719580997226127077974898, 1.46980598779442705659199197468, 3.11506982641617732370971872529, 4.36555263509145090319273640811, 4.88325870447008983981821079916, 6.28996527462465235463976620272, 7.50697384173217384199994634800, 8.107972595907497308016194701757, 8.893731207261697481192198263226, 9.581612419827016419847185902169

Graph of the $Z$-function along the critical line