L(s) = 1 | + (−0.766 + 0.642i)2-s + (0.173 + 0.984i)3-s + (0.173 − 0.984i)4-s + (−0.132 − 0.752i)5-s + (−0.766 − 0.642i)6-s + (2.46 − 0.961i)7-s + (0.500 + 0.866i)8-s + (−0.939 + 0.342i)9-s + (0.585 + 0.491i)10-s − 4.18·11-s + 12-s + (0.739 + 0.620i)13-s + (−1.27 + 2.32i)14-s + (0.718 − 0.261i)15-s + (−0.939 − 0.342i)16-s + (2.33 + 0.850i)17-s + ⋯ |
L(s) = 1 | + (−0.541 + 0.454i)2-s + (0.100 + 0.568i)3-s + (0.0868 − 0.492i)4-s + (−0.0593 − 0.336i)5-s + (−0.312 − 0.262i)6-s + (0.931 − 0.363i)7-s + (0.176 + 0.306i)8-s + (−0.313 + 0.114i)9-s + (0.185 + 0.155i)10-s − 1.26·11-s + 0.288·12-s + (0.205 + 0.172i)13-s + (−0.339 + 0.620i)14-s + (0.185 − 0.0675i)15-s + (−0.234 − 0.0855i)16-s + (0.566 + 0.206i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.664 - 0.746i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.664 - 0.746i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.18430 + 0.531343i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.18430 + 0.531343i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.766 - 0.642i)T \) |
| 3 | \( 1 + (-0.173 - 0.984i)T \) |
| 7 | \( 1 + (-2.46 + 0.961i)T \) |
| 19 | \( 1 + (-4.08 - 1.50i)T \) |
good | 5 | \( 1 + (0.132 + 0.752i)T + (-4.69 + 1.71i)T^{2} \) |
| 11 | \( 1 + 4.18T + 11T^{2} \) |
| 13 | \( 1 + (-0.739 - 0.620i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (-2.33 - 0.850i)T + (13.0 + 10.9i)T^{2} \) |
| 23 | \( 1 + (-5.51 - 4.62i)T + (3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (-0.887 + 5.03i)T + (-27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + (4.14 + 7.17i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.51 - 9.54i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.27 - 1.07i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (-9.28 - 3.37i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-1.36 + 0.496i)T + (36.0 - 30.2i)T^{2} \) |
| 53 | \( 1 + (-0.349 + 1.98i)T + (-49.8 - 18.1i)T^{2} \) |
| 59 | \( 1 + (-7.70 - 2.80i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (-2.87 - 2.41i)T + (10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (0.953 + 0.799i)T + (11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (9.44 + 3.43i)T + (54.3 + 45.6i)T^{2} \) |
| 73 | \( 1 + (-1.38 - 7.83i)T + (-68.5 + 24.9i)T^{2} \) |
| 79 | \( 1 + (11.2 + 4.11i)T + (60.5 + 50.7i)T^{2} \) |
| 83 | \( 1 + (8.72 - 15.1i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (2.36 - 13.4i)T + (-83.6 - 30.4i)T^{2} \) |
| 97 | \( 1 + (2.82 + 16.0i)T + (-91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19041602737143642269655869825, −9.590699982439575261985449109346, −8.560238508757165309110351917924, −7.892617466246055102479522524734, −7.28975093795256121545290101468, −5.78012722129829444671920586365, −5.15007384675911244885305950709, −4.21756740944955913877504912356, −2.76098833073177177319722409570, −1.12307016916000215562631267810,
1.02145376177704951094896187319, 2.42719059097729091825153166840, 3.19365190214191629965211092581, 4.87376383390712923711117833787, 5.64545087115483863584607041312, 7.20341789509850659467575639140, 7.48397278968026131399343364056, 8.587872655791968388937357905973, 9.067735508100158423565215610157, 10.46253424935533078233032241951