Properties

Label 2-7935-1.1-c1-0-29
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.42·2-s − 3-s + 0.0388·4-s + 5-s + 1.42·6-s + 1.25·7-s + 2.80·8-s + 9-s − 1.42·10-s + 0.401·11-s − 0.0388·12-s − 5.80·13-s − 1.78·14-s − 15-s − 4.07·16-s + 3.55·17-s − 1.42·18-s − 6.76·19-s + 0.0388·20-s − 1.25·21-s − 0.573·22-s − 2.80·24-s + 25-s + 8.28·26-s − 27-s + 0.0486·28-s − 5.50·29-s + ⋯
L(s)  = 1  − 1.00·2-s − 0.577·3-s + 0.0194·4-s + 0.447·5-s + 0.582·6-s + 0.473·7-s + 0.990·8-s + 0.333·9-s − 0.451·10-s + 0.121·11-s − 0.0112·12-s − 1.60·13-s − 0.478·14-s − 0.258·15-s − 1.01·16-s + 0.861·17-s − 0.336·18-s − 1.55·19-s + 0.00867·20-s − 0.273·21-s − 0.122·22-s − 0.571·24-s + 0.200·25-s + 1.62·26-s − 0.192·27-s + 0.00919·28-s − 1.02·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5053710881\)
\(L(\frac12)\) \(\approx\) \(0.5053710881\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 - T \)
23 \( 1 \)
good2 \( 1 + 1.42T + 2T^{2} \)
7 \( 1 - 1.25T + 7T^{2} \)
11 \( 1 - 0.401T + 11T^{2} \)
13 \( 1 + 5.80T + 13T^{2} \)
17 \( 1 - 3.55T + 17T^{2} \)
19 \( 1 + 6.76T + 19T^{2} \)
29 \( 1 + 5.50T + 29T^{2} \)
31 \( 1 + 11.0T + 31T^{2} \)
37 \( 1 - 4.78T + 37T^{2} \)
41 \( 1 + 10.5T + 41T^{2} \)
43 \( 1 + 9.81T + 43T^{2} \)
47 \( 1 - 10.3T + 47T^{2} \)
53 \( 1 + 1.43T + 53T^{2} \)
59 \( 1 - 9.68T + 59T^{2} \)
61 \( 1 - 10.0T + 61T^{2} \)
67 \( 1 + 11.0T + 67T^{2} \)
71 \( 1 + 7.14T + 71T^{2} \)
73 \( 1 + 3.47T + 73T^{2} \)
79 \( 1 - 13.9T + 79T^{2} \)
83 \( 1 - 3.32T + 83T^{2} \)
89 \( 1 - 12.8T + 89T^{2} \)
97 \( 1 + 1.15T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83203215980063556080824842878, −7.28673914700486294726908699629, −6.69806881994979169516726978412, −5.66373540131936271394550886465, −5.10886908959578314001094272032, −4.49103775386192095552314432801, −3.57798257254983859864277501114, −2.14887508749957217177796625554, −1.71219041091856878821976134017, −0.42258388389879229630174528961, 0.42258388389879229630174528961, 1.71219041091856878821976134017, 2.14887508749957217177796625554, 3.57798257254983859864277501114, 4.49103775386192095552314432801, 5.10886908959578314001094272032, 5.66373540131936271394550886465, 6.69806881994979169516726978412, 7.28673914700486294726908699629, 7.83203215980063556080824842878

Graph of the $Z$-function along the critical line