Properties

Label 2-7935-1.1-c1-0-195
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.20·2-s + 3-s + 2.84·4-s + 5-s + 2.20·6-s − 2.98·7-s + 1.85·8-s + 9-s + 2.20·10-s + 6.44·11-s + 2.84·12-s − 4.24·13-s − 6.56·14-s + 15-s − 1.61·16-s + 3.96·17-s + 2.20·18-s + 3.04·19-s + 2.84·20-s − 2.98·21-s + 14.1·22-s + 1.85·24-s + 25-s − 9.34·26-s + 27-s − 8.48·28-s + 7.28·29-s + ⋯
L(s)  = 1  + 1.55·2-s + 0.577·3-s + 1.42·4-s + 0.447·5-s + 0.898·6-s − 1.12·7-s + 0.654·8-s + 0.333·9-s + 0.695·10-s + 1.94·11-s + 0.820·12-s − 1.17·13-s − 1.75·14-s + 0.258·15-s − 0.402·16-s + 0.962·17-s + 0.518·18-s + 0.699·19-s + 0.635·20-s − 0.651·21-s + 3.02·22-s + 0.377·24-s + 0.200·25-s − 1.83·26-s + 0.192·27-s − 1.60·28-s + 1.35·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.981229378\)
\(L(\frac12)\) \(\approx\) \(6.981229378\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 - T \)
23 \( 1 \)
good2 \( 1 - 2.20T + 2T^{2} \)
7 \( 1 + 2.98T + 7T^{2} \)
11 \( 1 - 6.44T + 11T^{2} \)
13 \( 1 + 4.24T + 13T^{2} \)
17 \( 1 - 3.96T + 17T^{2} \)
19 \( 1 - 3.04T + 19T^{2} \)
29 \( 1 - 7.28T + 29T^{2} \)
31 \( 1 - 5.33T + 31T^{2} \)
37 \( 1 - 0.662T + 37T^{2} \)
41 \( 1 - 6.40T + 41T^{2} \)
43 \( 1 + 1.19T + 43T^{2} \)
47 \( 1 + 7.91T + 47T^{2} \)
53 \( 1 - 8.59T + 53T^{2} \)
59 \( 1 + 5.35T + 59T^{2} \)
61 \( 1 - 1.72T + 61T^{2} \)
67 \( 1 - 7.36T + 67T^{2} \)
71 \( 1 + 11.4T + 71T^{2} \)
73 \( 1 + 13.1T + 73T^{2} \)
79 \( 1 + 11.0T + 79T^{2} \)
83 \( 1 + 12.1T + 83T^{2} \)
89 \( 1 - 16.3T + 89T^{2} \)
97 \( 1 - 9.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41901091694342790516798276712, −6.95884227834999474525598286973, −6.22717530090721000120625083166, −5.89878107181694438164019153219, −4.79336143818500525710786021962, −4.35025371599585722495144314562, −3.33888399166229897897490732584, −3.13030411548948265165286926945, −2.20352609559880512711449303181, −1.05009439670831447896444044093, 1.05009439670831447896444044093, 2.20352609559880512711449303181, 3.13030411548948265165286926945, 3.33888399166229897897490732584, 4.35025371599585722495144314562, 4.79336143818500525710786021962, 5.89878107181694438164019153219, 6.22717530090721000120625083166, 6.95884227834999474525598286973, 7.41901091694342790516798276712

Graph of the $Z$-function along the critical line