L(s) = 1 | + (−1.13 + 0.838i)2-s + (0.592 − 1.91i)4-s + 3.89i·5-s − 1.77·7-s + (0.928 + 2.67i)8-s + (−3.26 − 4.42i)10-s + i·11-s + 5.27i·13-s + (2.02 − 1.48i)14-s + (−3.29 − 2.26i)16-s + 2.76·17-s − 4.13i·19-s + (7.43 + 2.30i)20-s + (−0.838 − 1.13i)22-s − 6.91·23-s + ⋯ |
L(s) = 1 | + (−0.805 + 0.593i)2-s + (0.296 − 0.955i)4-s + 1.73i·5-s − 0.670·7-s + (0.328 + 0.944i)8-s + (−1.03 − 1.40i)10-s + 0.301i·11-s + 1.46i·13-s + (0.540 − 0.397i)14-s + (−0.824 − 0.565i)16-s + 0.669·17-s − 0.948i·19-s + (1.66 + 0.515i)20-s + (−0.178 − 0.242i)22-s − 1.44·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 + 0.328i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.944 + 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0925359 - 0.548280i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0925359 - 0.548280i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.13 - 0.838i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 - iT \) |
good | 5 | \( 1 - 3.89iT - 5T^{2} \) |
| 7 | \( 1 + 1.77T + 7T^{2} \) |
| 13 | \( 1 - 5.27iT - 13T^{2} \) |
| 17 | \( 1 - 2.76T + 17T^{2} \) |
| 19 | \( 1 + 4.13iT - 19T^{2} \) |
| 23 | \( 1 + 6.91T + 23T^{2} \) |
| 29 | \( 1 + 1.74iT - 29T^{2} \) |
| 31 | \( 1 - 5.35T + 31T^{2} \) |
| 37 | \( 1 - 3.18iT - 37T^{2} \) |
| 41 | \( 1 - 2.49T + 41T^{2} \) |
| 43 | \( 1 + 2.49iT - 43T^{2} \) |
| 47 | \( 1 + 11.5T + 47T^{2} \) |
| 53 | \( 1 - 9.61iT - 53T^{2} \) |
| 59 | \( 1 - 9.27iT - 59T^{2} \) |
| 61 | \( 1 + 13.8iT - 61T^{2} \) |
| 67 | \( 1 + 3.84iT - 67T^{2} \) |
| 71 | \( 1 + 7.62T + 71T^{2} \) |
| 73 | \( 1 + 10.7T + 73T^{2} \) |
| 79 | \( 1 + 0.281T + 79T^{2} \) |
| 83 | \( 1 - 0.313iT - 83T^{2} \) |
| 89 | \( 1 - 2.47T + 89T^{2} \) |
| 97 | \( 1 - 11.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.44096349661022465694960896330, −9.896376760365160249038422698839, −9.238835528706020103223507758348, −8.001840890135116749346519732508, −7.19821971137449764757934056893, −6.52715316392061401837170758339, −6.06384386680244491355630264395, −4.47061333858523118466655621000, −3.08681012882623575706944468024, −2.01747780794105059919817782176,
0.36184781938271914211976935897, 1.52774495506501313991056236272, 3.12196242715129764622960543054, 4.09827082532318359992862961302, 5.34211327191207280023292935683, 6.23097511241838619054266910125, 7.85838445681188085327774750634, 8.124421603854878096867526212303, 8.988976353385084257326978263742, 9.958009267048374897211618482149