Properties

Label 2-7865-1.1-c1-0-2
Degree $2$
Conductor $7865$
Sign $1$
Analytic cond. $62.8023$
Root an. cond. $7.92479$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.54·2-s − 1.71·3-s + 4.49·4-s + 5-s + 4.37·6-s − 3.27·7-s − 6.36·8-s − 0.0475·9-s − 2.54·10-s − 7.72·12-s + 13-s + 8.35·14-s − 1.71·15-s + 7.22·16-s − 7.30·17-s + 0.121·18-s + 2.61·19-s + 4.49·20-s + 5.63·21-s − 8.26·23-s + 10.9·24-s + 25-s − 2.54·26-s + 5.23·27-s − 14.7·28-s − 7.56·29-s + 4.37·30-s + ⋯
L(s)  = 1  − 1.80·2-s − 0.992·3-s + 2.24·4-s + 0.447·5-s + 1.78·6-s − 1.23·7-s − 2.25·8-s − 0.0158·9-s − 0.806·10-s − 2.23·12-s + 0.277·13-s + 2.23·14-s − 0.443·15-s + 1.80·16-s − 1.77·17-s + 0.0285·18-s + 0.600·19-s + 1.00·20-s + 1.22·21-s − 1.72·23-s + 2.23·24-s + 0.200·25-s − 0.499·26-s + 1.00·27-s − 2.78·28-s − 1.40·29-s + 0.799·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7865\)    =    \(5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(62.8023\)
Root analytic conductor: \(7.92479\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7865,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.01283813227\)
\(L(\frac12)\) \(\approx\) \(0.01283813227\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good2 \( 1 + 2.54T + 2T^{2} \)
3 \( 1 + 1.71T + 3T^{2} \)
7 \( 1 + 3.27T + 7T^{2} \)
17 \( 1 + 7.30T + 17T^{2} \)
19 \( 1 - 2.61T + 19T^{2} \)
23 \( 1 + 8.26T + 23T^{2} \)
29 \( 1 + 7.56T + 29T^{2} \)
31 \( 1 - 1.07T + 31T^{2} \)
37 \( 1 + 6.32T + 37T^{2} \)
41 \( 1 - 7.69T + 41T^{2} \)
43 \( 1 + 5.98T + 43T^{2} \)
47 \( 1 - 3.57T + 47T^{2} \)
53 \( 1 + 4.94T + 53T^{2} \)
59 \( 1 + 9.00T + 59T^{2} \)
61 \( 1 + 9.71T + 61T^{2} \)
67 \( 1 + 9.18T + 67T^{2} \)
71 \( 1 + 7.55T + 71T^{2} \)
73 \( 1 - 14.9T + 73T^{2} \)
79 \( 1 - 7.89T + 79T^{2} \)
83 \( 1 + 11.6T + 83T^{2} \)
89 \( 1 + 5.91T + 89T^{2} \)
97 \( 1 + 2.19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.923195227936012906734297483826, −7.13015454974244827040419408969, −6.48454968601704790053923394642, −6.15908193399622083583849449794, −5.51080376940651431028993013855, −4.29730088190586068138643693167, −3.17421119714605115757422372466, −2.31479841986336520687525316360, −1.46345785829413582558043112094, −0.07790808363368444708910096297, 0.07790808363368444708910096297, 1.46345785829413582558043112094, 2.31479841986336520687525316360, 3.17421119714605115757422372466, 4.29730088190586068138643693167, 5.51080376940651431028993013855, 6.15908193399622083583849449794, 6.48454968601704790053923394642, 7.13015454974244827040419408969, 7.923195227936012906734297483826

Graph of the $Z$-function along the critical line