Properties

Label 2-7865-1.1-c1-0-135
Degree $2$
Conductor $7865$
Sign $1$
Analytic cond. $62.8023$
Root an. cond. $7.92479$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.515·2-s + 3.41·3-s − 1.73·4-s − 5-s + 1.75·6-s − 3.94·7-s − 1.92·8-s + 8.64·9-s − 0.515·10-s − 5.91·12-s + 13-s − 2.03·14-s − 3.41·15-s + 2.47·16-s − 3.68·17-s + 4.45·18-s − 7.00·19-s + 1.73·20-s − 13.4·21-s − 0.500·23-s − 6.56·24-s + 25-s + 0.515·26-s + 19.2·27-s + 6.84·28-s + 1.44·29-s − 1.75·30-s + ⋯
L(s)  = 1  + 0.364·2-s + 1.97·3-s − 0.867·4-s − 0.447·5-s + 0.717·6-s − 1.49·7-s − 0.680·8-s + 2.88·9-s − 0.162·10-s − 1.70·12-s + 0.277·13-s − 0.543·14-s − 0.881·15-s + 0.619·16-s − 0.894·17-s + 1.05·18-s − 1.60·19-s + 0.387·20-s − 2.93·21-s − 0.104·23-s − 1.34·24-s + 0.200·25-s + 0.101·26-s + 3.70·27-s + 1.29·28-s + 0.268·29-s − 0.321·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7865\)    =    \(5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(62.8023\)
Root analytic conductor: \(7.92479\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7865,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.854021452\)
\(L(\frac12)\) \(\approx\) \(2.854021452\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
11 \( 1 \)
13 \( 1 - T \)
good2 \( 1 - 0.515T + 2T^{2} \)
3 \( 1 - 3.41T + 3T^{2} \)
7 \( 1 + 3.94T + 7T^{2} \)
17 \( 1 + 3.68T + 17T^{2} \)
19 \( 1 + 7.00T + 19T^{2} \)
23 \( 1 + 0.500T + 23T^{2} \)
29 \( 1 - 1.44T + 29T^{2} \)
31 \( 1 - 3.16T + 31T^{2} \)
37 \( 1 + 4.04T + 37T^{2} \)
41 \( 1 - 4.81T + 41T^{2} \)
43 \( 1 - 9.59T + 43T^{2} \)
47 \( 1 - 10.7T + 47T^{2} \)
53 \( 1 - 7.76T + 53T^{2} \)
59 \( 1 - 3.02T + 59T^{2} \)
61 \( 1 - 5.79T + 61T^{2} \)
67 \( 1 + 6.45T + 67T^{2} \)
71 \( 1 - 4.93T + 71T^{2} \)
73 \( 1 + 1.48T + 73T^{2} \)
79 \( 1 - 4.11T + 79T^{2} \)
83 \( 1 - 6.05T + 83T^{2} \)
89 \( 1 + 7.00T + 89T^{2} \)
97 \( 1 + 19.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.110660795041338770631285698409, −7.18988378200382607556025473009, −6.65501759080188231121289179948, −5.84844098805112765409080810106, −4.48880614160035181877065674457, −4.10997821448445377441579563078, −3.60852198420034467568648831002, −2.81042084549721157150448217514, −2.25191285403935230556129024657, −0.70218081689062679014445902158, 0.70218081689062679014445902158, 2.25191285403935230556129024657, 2.81042084549721157150448217514, 3.60852198420034467568648831002, 4.10997821448445377441579563078, 4.48880614160035181877065674457, 5.84844098805112765409080810106, 6.65501759080188231121289179948, 7.18988378200382607556025473009, 8.110660795041338770631285698409

Graph of the $Z$-function along the critical line