Properties

Label 2-7865-1.1-c1-0-21
Degree $2$
Conductor $7865$
Sign $1$
Analytic cond. $62.8023$
Root an. cond. $7.92479$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.758·2-s + 1.52·3-s − 1.42·4-s − 5-s − 1.15·6-s − 2.88·7-s + 2.59·8-s − 0.671·9-s + 0.758·10-s − 2.17·12-s + 13-s + 2.18·14-s − 1.52·15-s + 0.876·16-s − 7.55·17-s + 0.509·18-s − 5.97·19-s + 1.42·20-s − 4.40·21-s − 4.13·23-s + 3.96·24-s + 25-s − 0.758·26-s − 5.60·27-s + 4.10·28-s + 1.16·29-s + 1.15·30-s + ⋯
L(s)  = 1  − 0.536·2-s + 0.881·3-s − 0.712·4-s − 0.447·5-s − 0.472·6-s − 1.09·7-s + 0.918·8-s − 0.223·9-s + 0.239·10-s − 0.627·12-s + 0.277·13-s + 0.585·14-s − 0.393·15-s + 0.219·16-s − 1.83·17-s + 0.120·18-s − 1.37·19-s + 0.318·20-s − 0.960·21-s − 0.861·23-s + 0.809·24-s + 0.200·25-s − 0.148·26-s − 1.07·27-s + 0.776·28-s + 0.216·29-s + 0.211·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7865\)    =    \(5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(62.8023\)
Root analytic conductor: \(7.92479\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7865,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3720825800\)
\(L(\frac12)\) \(\approx\) \(0.3720825800\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
11 \( 1 \)
13 \( 1 - T \)
good2 \( 1 + 0.758T + 2T^{2} \)
3 \( 1 - 1.52T + 3T^{2} \)
7 \( 1 + 2.88T + 7T^{2} \)
17 \( 1 + 7.55T + 17T^{2} \)
19 \( 1 + 5.97T + 19T^{2} \)
23 \( 1 + 4.13T + 23T^{2} \)
29 \( 1 - 1.16T + 29T^{2} \)
31 \( 1 - 3.42T + 31T^{2} \)
37 \( 1 - 1.26T + 37T^{2} \)
41 \( 1 - 0.324T + 41T^{2} \)
43 \( 1 - 3.69T + 43T^{2} \)
47 \( 1 + 0.687T + 47T^{2} \)
53 \( 1 + 7.22T + 53T^{2} \)
59 \( 1 + 14.8T + 59T^{2} \)
61 \( 1 + 3.05T + 61T^{2} \)
67 \( 1 - 14.4T + 67T^{2} \)
71 \( 1 + 3.70T + 71T^{2} \)
73 \( 1 + 14.6T + 73T^{2} \)
79 \( 1 + 16.1T + 79T^{2} \)
83 \( 1 - 14.8T + 83T^{2} \)
89 \( 1 - 9.83T + 89T^{2} \)
97 \( 1 - 3.84T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.061056783750201821178856049116, −7.42070428857475486832606598064, −6.43717164576232175949713004442, −6.07224089650845568758452581233, −4.71894870200139899806364547742, −4.21966801888771836763937224258, −3.52473580325154431979764607895, −2.69092244371208999029168847530, −1.84833584371155990325450919162, −0.30012872096613817253142808189, 0.30012872096613817253142808189, 1.84833584371155990325450919162, 2.69092244371208999029168847530, 3.52473580325154431979764607895, 4.21966801888771836763937224258, 4.71894870200139899806364547742, 6.07224089650845568758452581233, 6.43717164576232175949713004442, 7.42070428857475486832606598064, 8.061056783750201821178856049116

Graph of the $Z$-function along the critical line