Properties

Label 2-7865-1.1-c1-0-216
Degree $2$
Conductor $7865$
Sign $-1$
Analytic cond. $62.8023$
Root an. cond. $7.92479$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.582·2-s − 0.306·3-s − 1.66·4-s − 5-s − 0.178·6-s − 3.02·7-s − 2.13·8-s − 2.90·9-s − 0.582·10-s + 0.508·12-s − 13-s − 1.76·14-s + 0.306·15-s + 2.07·16-s + 0.657·17-s − 1.69·18-s + 1.08·19-s + 1.66·20-s + 0.925·21-s + 0.839·23-s + 0.653·24-s + 25-s − 0.582·26-s + 1.80·27-s + 5.02·28-s + 9.63·29-s + 0.178·30-s + ⋯
L(s)  = 1  + 0.412·2-s − 0.176·3-s − 0.830·4-s − 0.447·5-s − 0.0728·6-s − 1.14·7-s − 0.754·8-s − 0.968·9-s − 0.184·10-s + 0.146·12-s − 0.277·13-s − 0.470·14-s + 0.0790·15-s + 0.519·16-s + 0.159·17-s − 0.399·18-s + 0.249·19-s + 0.371·20-s + 0.202·21-s + 0.175·23-s + 0.133·24-s + 0.200·25-s − 0.114·26-s + 0.348·27-s + 0.948·28-s + 1.78·29-s + 0.0325·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7865\)    =    \(5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(62.8023\)
Root analytic conductor: \(7.92479\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7865,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
11 \( 1 \)
13 \( 1 + T \)
good2 \( 1 - 0.582T + 2T^{2} \)
3 \( 1 + 0.306T + 3T^{2} \)
7 \( 1 + 3.02T + 7T^{2} \)
17 \( 1 - 0.657T + 17T^{2} \)
19 \( 1 - 1.08T + 19T^{2} \)
23 \( 1 - 0.839T + 23T^{2} \)
29 \( 1 - 9.63T + 29T^{2} \)
31 \( 1 - 4.46T + 31T^{2} \)
37 \( 1 + 0.992T + 37T^{2} \)
41 \( 1 + 7.35T + 41T^{2} \)
43 \( 1 - 5.45T + 43T^{2} \)
47 \( 1 - 6.29T + 47T^{2} \)
53 \( 1 - 14.3T + 53T^{2} \)
59 \( 1 + 12.0T + 59T^{2} \)
61 \( 1 - 3.03T + 61T^{2} \)
67 \( 1 + 3.16T + 67T^{2} \)
71 \( 1 + 10.7T + 71T^{2} \)
73 \( 1 + 9.88T + 73T^{2} \)
79 \( 1 - 11.8T + 79T^{2} \)
83 \( 1 + 8.89T + 83T^{2} \)
89 \( 1 + 0.711T + 89T^{2} \)
97 \( 1 + 12.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47594840438233058389567330290, −6.63313906367731851169410670297, −6.04706061180386612688370756902, −5.39049203971847298645208188086, −4.65865745921626221651148958958, −3.95007493209343027537850435177, −3.07406508437826796535512595894, −2.74529892065399809570490988706, −0.900249863778393490350753966585, 0, 0.900249863778393490350753966585, 2.74529892065399809570490988706, 3.07406508437826796535512595894, 3.95007493209343027537850435177, 4.65865745921626221651148958958, 5.39049203971847298645208188086, 6.04706061180386612688370756902, 6.63313906367731851169410670297, 7.47594840438233058389567330290

Graph of the $Z$-function along the critical line