Properties

Label 2-7865-1.1-c1-0-196
Degree $2$
Conductor $7865$
Sign $-1$
Analytic cond. $62.8023$
Root an. cond. $7.92479$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.38·2-s − 0.126·3-s + 3.67·4-s + 5-s + 0.300·6-s − 4.61·7-s − 3.99·8-s − 2.98·9-s − 2.38·10-s − 0.463·12-s + 13-s + 11.0·14-s − 0.126·15-s + 2.16·16-s + 0.706·17-s + 7.10·18-s − 7.92·19-s + 3.67·20-s + 0.582·21-s + 2.17·23-s + 0.503·24-s + 25-s − 2.38·26-s + 0.755·27-s − 16.9·28-s − 1.60·29-s + 0.300·30-s + ⋯
L(s)  = 1  − 1.68·2-s − 0.0728·3-s + 1.83·4-s + 0.447·5-s + 0.122·6-s − 1.74·7-s − 1.41·8-s − 0.994·9-s − 0.753·10-s − 0.133·12-s + 0.277·13-s + 2.94·14-s − 0.0325·15-s + 0.540·16-s + 0.171·17-s + 1.67·18-s − 1.81·19-s + 0.821·20-s + 0.127·21-s + 0.454·23-s + 0.102·24-s + 0.200·25-s − 0.467·26-s + 0.145·27-s − 3.20·28-s − 0.297·29-s + 0.0548·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7865\)    =    \(5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(62.8023\)
Root analytic conductor: \(7.92479\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7865,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good2 \( 1 + 2.38T + 2T^{2} \)
3 \( 1 + 0.126T + 3T^{2} \)
7 \( 1 + 4.61T + 7T^{2} \)
17 \( 1 - 0.706T + 17T^{2} \)
19 \( 1 + 7.92T + 19T^{2} \)
23 \( 1 - 2.17T + 23T^{2} \)
29 \( 1 + 1.60T + 29T^{2} \)
31 \( 1 - 7.64T + 31T^{2} \)
37 \( 1 - 4.93T + 37T^{2} \)
41 \( 1 - 0.274T + 41T^{2} \)
43 \( 1 - 9.87T + 43T^{2} \)
47 \( 1 + 8.87T + 47T^{2} \)
53 \( 1 + 11.8T + 53T^{2} \)
59 \( 1 + 3.85T + 59T^{2} \)
61 \( 1 + 7.25T + 61T^{2} \)
67 \( 1 - 9.78T + 67T^{2} \)
71 \( 1 - 14.0T + 71T^{2} \)
73 \( 1 - 15.2T + 73T^{2} \)
79 \( 1 + 17.5T + 79T^{2} \)
83 \( 1 - 9.03T + 83T^{2} \)
89 \( 1 - 13.4T + 89T^{2} \)
97 \( 1 - 14.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75692782789772933129672538350, −6.69337070656973508731690403471, −6.35505333691354822360903393507, −5.99172412396286829428371393697, −4.73777103361769126741397998963, −3.55656010570698132061826081607, −2.75169749456807159384288596202, −2.18086869412022981999707548828, −0.852671510587556166295088582439, 0, 0.852671510587556166295088582439, 2.18086869412022981999707548828, 2.75169749456807159384288596202, 3.55656010570698132061826081607, 4.73777103361769126741397998963, 5.99172412396286829428371393697, 6.35505333691354822360903393507, 6.69337070656973508731690403471, 7.75692782789772933129672538350

Graph of the $Z$-function along the critical line