Properties

Label 2-7865-1.1-c1-0-293
Degree $2$
Conductor $7865$
Sign $-1$
Analytic cond. $62.8023$
Root an. cond. $7.92479$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.707·2-s + 0.0372·3-s − 1.49·4-s + 5-s + 0.0263·6-s − 3.49·7-s − 2.47·8-s − 2.99·9-s + 0.707·10-s − 0.0558·12-s + 13-s − 2.47·14-s + 0.0372·15-s + 1.24·16-s + 8.22·17-s − 2.12·18-s + 1.20·19-s − 1.49·20-s − 0.130·21-s − 6.68·23-s − 0.0921·24-s + 25-s + 0.707·26-s − 0.223·27-s + 5.24·28-s + 9.21·29-s + 0.0263·30-s + ⋯
L(s)  = 1  + 0.500·2-s + 0.0214·3-s − 0.749·4-s + 0.447·5-s + 0.0107·6-s − 1.32·7-s − 0.875·8-s − 0.999·9-s + 0.223·10-s − 0.0161·12-s + 0.277·13-s − 0.660·14-s + 0.00960·15-s + 0.312·16-s + 1.99·17-s − 0.499·18-s + 0.276·19-s − 0.335·20-s − 0.0283·21-s − 1.39·23-s − 0.0188·24-s + 0.200·25-s + 0.138·26-s − 0.0429·27-s + 0.990·28-s + 1.71·29-s + 0.00480·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7865\)    =    \(5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(62.8023\)
Root analytic conductor: \(7.92479\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7865,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good2 \( 1 - 0.707T + 2T^{2} \)
3 \( 1 - 0.0372T + 3T^{2} \)
7 \( 1 + 3.49T + 7T^{2} \)
17 \( 1 - 8.22T + 17T^{2} \)
19 \( 1 - 1.20T + 19T^{2} \)
23 \( 1 + 6.68T + 23T^{2} \)
29 \( 1 - 9.21T + 29T^{2} \)
31 \( 1 - 5.59T + 31T^{2} \)
37 \( 1 + 5.59T + 37T^{2} \)
41 \( 1 + 8.81T + 41T^{2} \)
43 \( 1 - 0.854T + 43T^{2} \)
47 \( 1 - 4.31T + 47T^{2} \)
53 \( 1 + 3.76T + 53T^{2} \)
59 \( 1 + 5.07T + 59T^{2} \)
61 \( 1 - 1.20T + 61T^{2} \)
67 \( 1 - 9.90T + 67T^{2} \)
71 \( 1 + 1.72T + 71T^{2} \)
73 \( 1 + 15.8T + 73T^{2} \)
79 \( 1 + 10.1T + 79T^{2} \)
83 \( 1 - 8.05T + 83T^{2} \)
89 \( 1 - 8.35T + 89T^{2} \)
97 \( 1 - 12.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.55283432770098649956217243843, −6.35784373905585916983125515952, −6.14345117066236350166999452714, −5.44876930299268758342390014344, −4.80390531259643108121822274813, −3.67817281179155868106855886476, −3.27209441434405259978445281544, −2.62411575564931888533334654592, −1.10095289640126905648851618977, 0, 1.10095289640126905648851618977, 2.62411575564931888533334654592, 3.27209441434405259978445281544, 3.67817281179155868106855886476, 4.80390531259643108121822274813, 5.44876930299268758342390014344, 6.14345117066236350166999452714, 6.35784373905585916983125515952, 7.55283432770098649956217243843

Graph of the $Z$-function along the critical line