Properties

Label 2-7865-1.1-c1-0-319
Degree $2$
Conductor $7865$
Sign $-1$
Analytic cond. $62.8023$
Root an. cond. $7.92479$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.0520·2-s + 1.79·3-s − 1.99·4-s + 5-s − 0.0932·6-s − 4.01·7-s + 0.208·8-s + 0.210·9-s − 0.0520·10-s − 3.57·12-s + 13-s + 0.208·14-s + 1.79·15-s + 3.98·16-s − 3.51·17-s − 0.0109·18-s + 5.87·19-s − 1.99·20-s − 7.18·21-s + 5.34·23-s + 0.372·24-s + 25-s − 0.0520·26-s − 4.99·27-s + 8.01·28-s − 6.81·29-s − 0.0932·30-s + ⋯
L(s)  = 1  − 0.0368·2-s + 1.03·3-s − 0.998·4-s + 0.447·5-s − 0.0380·6-s − 1.51·7-s + 0.0735·8-s + 0.0702·9-s − 0.0164·10-s − 1.03·12-s + 0.277·13-s + 0.0557·14-s + 0.462·15-s + 0.995·16-s − 0.851·17-s − 0.00258·18-s + 1.34·19-s − 0.446·20-s − 1.56·21-s + 1.11·23-s + 0.0760·24-s + 0.200·25-s − 0.0102·26-s − 0.961·27-s + 1.51·28-s − 1.26·29-s − 0.0170·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7865\)    =    \(5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(62.8023\)
Root analytic conductor: \(7.92479\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7865,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good2 \( 1 + 0.0520T + 2T^{2} \)
3 \( 1 - 1.79T + 3T^{2} \)
7 \( 1 + 4.01T + 7T^{2} \)
17 \( 1 + 3.51T + 17T^{2} \)
19 \( 1 - 5.87T + 19T^{2} \)
23 \( 1 - 5.34T + 23T^{2} \)
29 \( 1 + 6.81T + 29T^{2} \)
31 \( 1 - 7.24T + 31T^{2} \)
37 \( 1 + 8.66T + 37T^{2} \)
41 \( 1 + 3.65T + 41T^{2} \)
43 \( 1 - 10.8T + 43T^{2} \)
47 \( 1 - 11.2T + 47T^{2} \)
53 \( 1 + 1.89T + 53T^{2} \)
59 \( 1 - 6.49T + 59T^{2} \)
61 \( 1 + 0.835T + 61T^{2} \)
67 \( 1 + 15.4T + 67T^{2} \)
71 \( 1 - 6.25T + 71T^{2} \)
73 \( 1 + 12.3T + 73T^{2} \)
79 \( 1 + 10.1T + 79T^{2} \)
83 \( 1 + 9.00T + 83T^{2} \)
89 \( 1 + 8.81T + 89T^{2} \)
97 \( 1 + 7.86T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.42842258843365682788648451200, −7.04673711646059573043850210591, −5.93362060767146192103672368106, −5.56658536016032197750491178327, −4.51683795277036317228854010929, −3.70857378819280335949604556322, −3.13185307304030554052602340793, −2.55006786093548856930743619257, −1.21740348999739204285027502562, 0, 1.21740348999739204285027502562, 2.55006786093548856930743619257, 3.13185307304030554052602340793, 3.70857378819280335949604556322, 4.51683795277036317228854010929, 5.56658536016032197750491178327, 5.93362060767146192103672368106, 7.04673711646059573043850210591, 7.42842258843365682788648451200

Graph of the $Z$-function along the critical line