Properties

Label 2-28e2-28.27-c5-0-40
Degree $2$
Conductor $784$
Sign $0.156 - 0.987i$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.79·3-s + 46.3i·5-s − 182.·9-s + 756. i·11-s + 202. i·13-s − 361. i·15-s − 1.56e3i·17-s + 2.40e3·19-s − 3.40e3i·23-s + 972.·25-s + 3.31e3·27-s + 3.14e3·29-s + 278.·31-s − 5.89e3i·33-s + 7.58e3·37-s + ⋯
L(s)  = 1  − 0.499·3-s + 0.829i·5-s − 0.750·9-s + 1.88i·11-s + 0.333i·13-s − 0.414i·15-s − 1.31i·17-s + 1.52·19-s − 1.34i·23-s + 0.311·25-s + 0.874·27-s + 0.694·29-s + 0.0520·31-s − 0.942i·33-s + 0.910·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.156 - 0.987i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.156 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $0.156 - 0.987i$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{784} (783, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ 0.156 - 0.987i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.667994046\)
\(L(\frac12)\) \(\approx\) \(1.667994046\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 7.79T + 243T^{2} \)
5 \( 1 - 46.3iT - 3.12e3T^{2} \)
11 \( 1 - 756. iT - 1.61e5T^{2} \)
13 \( 1 - 202. iT - 3.71e5T^{2} \)
17 \( 1 + 1.56e3iT - 1.41e6T^{2} \)
19 \( 1 - 2.40e3T + 2.47e6T^{2} \)
23 \( 1 + 3.40e3iT - 6.43e6T^{2} \)
29 \( 1 - 3.14e3T + 2.05e7T^{2} \)
31 \( 1 - 278.T + 2.86e7T^{2} \)
37 \( 1 - 7.58e3T + 6.93e7T^{2} \)
41 \( 1 - 1.13e4iT - 1.15e8T^{2} \)
43 \( 1 + 4.59e3iT - 1.47e8T^{2} \)
47 \( 1 + 2.34e4T + 2.29e8T^{2} \)
53 \( 1 - 2.75e4T + 4.18e8T^{2} \)
59 \( 1 - 2.56e4T + 7.14e8T^{2} \)
61 \( 1 - 1.58e4iT - 8.44e8T^{2} \)
67 \( 1 + 1.87e4iT - 1.35e9T^{2} \)
71 \( 1 - 233. iT - 1.80e9T^{2} \)
73 \( 1 - 2.65e4iT - 2.07e9T^{2} \)
79 \( 1 + 1.05e5iT - 3.07e9T^{2} \)
83 \( 1 - 7.75e4T + 3.93e9T^{2} \)
89 \( 1 + 2.31e4iT - 5.58e9T^{2} \)
97 \( 1 + 6.02e3iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.870168694221620365415424214131, −9.048302768083094077381483622565, −7.80455014367555645843943700105, −6.99798892585676464384795578213, −6.45375726339234839098239640743, −5.16888218422395578089321707208, −4.56751890000933927482503379380, −3.05682328769747956819901145120, −2.33416533972759911982289617824, −0.802237600422404759445521571395, 0.54176649031630004191318245389, 1.22515792120263628627643023663, 2.95474728025406135451976972551, 3.76943713895068503737687556579, 5.27620754419182201543744683442, 5.58865001131421241025477848535, 6.48404774047767447671555850001, 7.912771955096400157824797887152, 8.461075393677262834999302611129, 9.201487978976763261308016519099

Graph of the $Z$-function along the critical line