L(s) = 1 | − 7.79·3-s + 46.3i·5-s − 182.·9-s + 756. i·11-s + 202. i·13-s − 361. i·15-s − 1.56e3i·17-s + 2.40e3·19-s − 3.40e3i·23-s + 972.·25-s + 3.31e3·27-s + 3.14e3·29-s + 278.·31-s − 5.89e3i·33-s + 7.58e3·37-s + ⋯ |
L(s) = 1 | − 0.499·3-s + 0.829i·5-s − 0.750·9-s + 1.88i·11-s + 0.333i·13-s − 0.414i·15-s − 1.31i·17-s + 1.52·19-s − 1.34i·23-s + 0.311·25-s + 0.874·27-s + 0.694·29-s + 0.0520·31-s − 0.942i·33-s + 0.910·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.156 - 0.987i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.156 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.667994046\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.667994046\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 7.79T + 243T^{2} \) |
| 5 | \( 1 - 46.3iT - 3.12e3T^{2} \) |
| 11 | \( 1 - 756. iT - 1.61e5T^{2} \) |
| 13 | \( 1 - 202. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 1.56e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 2.40e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 3.40e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 3.14e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 278.T + 2.86e7T^{2} \) |
| 37 | \( 1 - 7.58e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 1.13e4iT - 1.15e8T^{2} \) |
| 43 | \( 1 + 4.59e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 2.34e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 2.75e4T + 4.18e8T^{2} \) |
| 59 | \( 1 - 2.56e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 1.58e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 1.87e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 233. iT - 1.80e9T^{2} \) |
| 73 | \( 1 - 2.65e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 + 1.05e5iT - 3.07e9T^{2} \) |
| 83 | \( 1 - 7.75e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 2.31e4iT - 5.58e9T^{2} \) |
| 97 | \( 1 + 6.02e3iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.870168694221620365415424214131, −9.048302768083094077381483622565, −7.80455014367555645843943700105, −6.99798892585676464384795578213, −6.45375726339234839098239640743, −5.16888218422395578089321707208, −4.56751890000933927482503379380, −3.05682328769747956819901145120, −2.33416533972759911982289617824, −0.802237600422404759445521571395,
0.54176649031630004191318245389, 1.22515792120263628627643023663, 2.95474728025406135451976972551, 3.76943713895068503737687556579, 5.27620754419182201543744683442, 5.58865001131421241025477848535, 6.48404774047767447671555850001, 7.912771955096400157824797887152, 8.461075393677262834999302611129, 9.201487978976763261308016519099