L(s) = 1 | + 24.0·3-s + 1.38i·5-s + 336.·9-s + 278. i·11-s − 96.6i·13-s + 33.3i·15-s + 1.91e3i·17-s + 1.42e3·19-s + 499. i·23-s + 3.12e3·25-s + 2.26e3·27-s − 5.15e3·29-s − 4.52e3·31-s + 6.70e3i·33-s − 1.88e3·37-s + ⋯ |
L(s) = 1 | + 1.54·3-s + 0.0247i·5-s + 1.38·9-s + 0.694i·11-s − 0.158i·13-s + 0.0383i·15-s + 1.60i·17-s + 0.903·19-s + 0.196i·23-s + 0.999·25-s + 0.596·27-s − 1.13·29-s − 0.845·31-s + 1.07i·33-s − 0.226·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.156 - 0.987i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.156 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(3.671930213\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.671930213\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 24.0T + 243T^{2} \) |
| 5 | \( 1 - 1.38iT - 3.12e3T^{2} \) |
| 11 | \( 1 - 278. iT - 1.61e5T^{2} \) |
| 13 | \( 1 + 96.6iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 1.91e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 1.42e3T + 2.47e6T^{2} \) |
| 23 | \( 1 - 499. iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 5.15e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 4.52e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 1.88e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 2.13e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 1.43e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 1.41e4T + 2.29e8T^{2} \) |
| 53 | \( 1 + 7.35e3T + 4.18e8T^{2} \) |
| 59 | \( 1 + 3.74e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 4.40e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 1.17e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 6.39e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + 3.17e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 9.57e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 - 8.25e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 7.62e4iT - 5.58e9T^{2} \) |
| 97 | \( 1 - 1.09e5iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.472670011762578358970745183626, −8.961345574338823334832236882640, −7.962289822181192180042461915429, −7.51852868957560538236546981600, −6.41152801339914291858835822870, −5.16303480683497829446248021606, −3.97308425410903151529243882267, −3.29088636262453406976321873363, −2.21065457886317025221333925730, −1.35230267685653059034195785507,
0.55929600017544514009868884286, 1.87113820530599078710676316457, 2.92816217400479290291841464872, 3.49304323856557400981256771964, 4.70466607460110744249209437326, 5.77275266037414646347137969186, 7.25068808656752231330000006091, 7.51416885376209236517751313675, 8.863407050625200607781015980320, 8.975461540257059755074889849045