Properties

Label 4-28e4-1.1-c3e2-0-7
Degree $4$
Conductor $614656$
Sign $1$
Analytic cond. $2139.75$
Root an. cond. $6.80128$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 22·5-s + 6·9-s − 36·11-s − 42·13-s + 44·15-s − 8·17-s − 118·19-s + 104·23-s + 170·25-s − 70·27-s − 56·29-s + 20·31-s + 72·33-s + 504·37-s + 84·39-s + 544·41-s − 412·43-s − 132·45-s − 500·47-s + 16·51-s + 268·53-s + 792·55-s + 236·57-s − 198·59-s + 346·61-s + 924·65-s + ⋯
L(s)  = 1  − 0.384·3-s − 1.96·5-s + 2/9·9-s − 0.986·11-s − 0.896·13-s + 0.757·15-s − 0.114·17-s − 1.42·19-s + 0.942·23-s + 1.35·25-s − 0.498·27-s − 0.358·29-s + 0.115·31-s + 0.379·33-s + 2.23·37-s + 0.344·39-s + 2.07·41-s − 1.46·43-s − 0.437·45-s − 1.55·47-s + 0.0439·51-s + 0.694·53-s + 1.94·55-s + 0.548·57-s − 0.436·59-s + 0.726·61-s + 1.76·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 614656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 614656 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(614656\)    =    \(2^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(2139.75\)
Root analytic conductor: \(6.80128\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 614656,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3$D_{4}$ \( 1 + 2 T - 2 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
5$D_{4}$ \( 1 + 22 T + 314 T^{2} + 22 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 36 T + 934 T^{2} + 36 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 42 T + 3410 T^{2} + 42 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 8 T + 7790 T^{2} + 8 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 118 T + 7566 T^{2} + 118 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 104 T + 26126 T^{2} - 104 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 56 T + 21974 T^{2} + 56 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 20 T + 48510 T^{2} - 20 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 504 T + 159110 T^{2} - 504 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 544 T + 193358 T^{2} - 544 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 412 T + 190278 T^{2} + 412 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 500 T + 258974 T^{2} + 500 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 268 T + 20222 T^{2} - 268 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 198 T + 410926 T^{2} + 198 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 346 T + 429114 T^{2} - 346 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 1008 T + 591974 T^{2} + 1008 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 1224 T + 980014 T^{2} - 1224 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 716 T + 832326 T^{2} + 716 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 584 T + 997470 T^{2} + 584 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 1230 T + 1395886 T^{2} + 1230 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 596 T + 39542 T^{2} + 596 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 856 T + 1729230 T^{2} - 856 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.795338349435947992967751852845, −9.291176140765407696470979890003, −8.683354551130858191511040490215, −8.274982381961332666430683419545, −7.87181912634010456917747928539, −7.68468708630519855327284499705, −7.08252086145397983054296820161, −6.90750836444547593528123308403, −6.08805662436930298769336160273, −5.76676698803462285742128738095, −5.02788016898788949520669326312, −4.60446674060470503107048151255, −4.21915410579249301744866077101, −3.89954366024856406174705752654, −2.99982940197687107880046665667, −2.71908690192197231303328509031, −1.90106111339045793867328995115, −0.882086212581632631102598569213, 0, 0, 0.882086212581632631102598569213, 1.90106111339045793867328995115, 2.71908690192197231303328509031, 2.99982940197687107880046665667, 3.89954366024856406174705752654, 4.21915410579249301744866077101, 4.60446674060470503107048151255, 5.02788016898788949520669326312, 5.76676698803462285742128738095, 6.08805662436930298769336160273, 6.90750836444547593528123308403, 7.08252086145397983054296820161, 7.68468708630519855327284499705, 7.87181912634010456917747928539, 8.274982381961332666430683419545, 8.683354551130858191511040490215, 9.291176140765407696470979890003, 9.795338349435947992967751852845

Graph of the $Z$-function along the critical line