Properties

Label 2-28e2-1.1-c3-0-10
Degree $2$
Conductor $784$
Sign $1$
Analytic cond. $46.2574$
Root an. cond. $6.80128$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.138·3-s − 10.0·5-s − 26.9·9-s + 18.6·11-s + 10.0·13-s + 1.39·15-s + 73.6·17-s − 76.0·19-s − 146.·23-s − 23.2·25-s + 7.46·27-s − 157.·29-s − 69.8·31-s − 2.58·33-s + 309.·37-s − 1.39·39-s + 482.·41-s − 17.3·43-s + 272.·45-s + 346.·47-s − 10.1·51-s − 73.4·53-s − 188.·55-s + 10.5·57-s − 704.·59-s + 841.·61-s − 101.·65-s + ⋯
L(s)  = 1  − 0.0265·3-s − 0.902·5-s − 0.999·9-s + 0.511·11-s + 0.215·13-s + 0.0239·15-s + 1.05·17-s − 0.918·19-s − 1.33·23-s − 0.186·25-s + 0.0531·27-s − 1.00·29-s − 0.404·31-s − 0.0136·33-s + 1.37·37-s − 0.00572·39-s + 1.83·41-s − 0.0615·43-s + 0.901·45-s + 1.07·47-s − 0.0279·51-s − 0.190·53-s − 0.461·55-s + 0.0244·57-s − 1.55·59-s + 1.76·61-s − 0.194·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(46.2574\)
Root analytic conductor: \(6.80128\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.221995487\)
\(L(\frac12)\) \(\approx\) \(1.221995487\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 0.138T + 27T^{2} \)
5 \( 1 + 10.0T + 125T^{2} \)
11 \( 1 - 18.6T + 1.33e3T^{2} \)
13 \( 1 - 10.0T + 2.19e3T^{2} \)
17 \( 1 - 73.6T + 4.91e3T^{2} \)
19 \( 1 + 76.0T + 6.85e3T^{2} \)
23 \( 1 + 146.T + 1.21e4T^{2} \)
29 \( 1 + 157.T + 2.43e4T^{2} \)
31 \( 1 + 69.8T + 2.97e4T^{2} \)
37 \( 1 - 309.T + 5.06e4T^{2} \)
41 \( 1 - 482.T + 6.89e4T^{2} \)
43 \( 1 + 17.3T + 7.95e4T^{2} \)
47 \( 1 - 346.T + 1.03e5T^{2} \)
53 \( 1 + 73.4T + 1.48e5T^{2} \)
59 \( 1 + 704.T + 2.05e5T^{2} \)
61 \( 1 - 841.T + 2.26e5T^{2} \)
67 \( 1 - 891.T + 3.00e5T^{2} \)
71 \( 1 - 525.T + 3.57e5T^{2} \)
73 \( 1 - 376.T + 3.89e5T^{2} \)
79 \( 1 + 1.23e3T + 4.93e5T^{2} \)
83 \( 1 - 771.T + 5.71e5T^{2} \)
89 \( 1 + 175.T + 7.04e5T^{2} \)
97 \( 1 - 1.31e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.844797162963070128838311981322, −8.987778183771716825536294901211, −8.066197439068803961971006857213, −7.58018645773102097401355317691, −6.25981022387122667658971860763, −5.61411064214104715311682231146, −4.21829720466458733691387742447, −3.56806707885836838314432520945, −2.25082312441583864804486466970, −0.60567352592223929778347721083, 0.60567352592223929778347721083, 2.25082312441583864804486466970, 3.56806707885836838314432520945, 4.21829720466458733691387742447, 5.61411064214104715311682231146, 6.25981022387122667658971860763, 7.58018645773102097401355317691, 8.066197439068803961971006857213, 8.987778183771716825536294901211, 9.844797162963070128838311981322

Graph of the $Z$-function along the critical line